Triplet spin resonance of the Haldane compound with interchain coupling

A. I. Smirnov1, V. N. Glazkov1, T. Kashivagi2, S. Kimura2, M. Hagiwara2, K. Kindo3, A.Ya. Shapiro4, L. N. Demianets4

1P. L. Kapitza Institute for Physical Problems, Moscow,
2Center for Quantum Science and Technology under Extreme Conditions (KYOKUGEN), Osaka University,
3Institute for Solid State Physics (ISSP), University of Tokyo,
4A. V. Shubnikov Institute for Crystallography RAS, Moscow

Collective triplet excitations in the Haldane-like magnet PbNi\textsubscript{2}V\textsubscript{2}O\textsubscript{8} present an example of new kind of spin dynamics. The spectrum of triplet excitations was found to be temperature dependent, indicating a nonlinear renormalization of the excitations energy. The 3D interchain coupling allows here the transition from a spin-liquid to an antiferromagnetic phase in a magnetic field, closing the spin gap. This ordering modifies the spectrum of triplet excitations both above and below the critical field. The measured spectrum of triplet excitations demonstrated a strong deviation from the perturbative approach for noninteracting chains [1], while is in agreement with a macroscopic approach implying the field-induced ordering at the critical field [2].