Talk 25: 14:45-

Pulsed and Multi-frequency ESR Investigation for Low-dimensional Molecular-based Conductors

Ko Furukawa, Keisuke Maeda, <u>Toshikazu Nakamura*</u> Institute for Molecular Science

We carried out pulsed and multi-frequency ESR investigation for low-dimensional molecularbased conductors to clarify the low-temperature electronic states and carrier dynamics. In this paper, we introduce our recent progress of investigations for TMTTF and BEDT-TTTF low-dimensional organic conductors and related materials.

1) The organic conductors, $(TMTTF)_2X$, are well-known quasi-one-dimensional conductors possessing various ground states, such as spin-Peierls, antiferromagnetic and superconductivity states realized by applied pressure or variation of counter anions, X. [1] However, the recent progress in the investigation of charge ordering (CO) phenomena has cast doubts on the validity of the simple Mott-Hubbard insulator scenario. [2] Hence, we performed pulsed ESR measurements to clarify the low-temperature electronic state. We present possible charge redistribution transitions observed in $(TMTTF)_2X$.

2) Multi-frequency ESR measurements using X-(9.5GHz), Q-(34GHz), and W-(95GHz) bands microwaves, magnetic measurement using SQUID and energy band calculation were carried out for ζ -(BEDT-TTF)₂PF₆(THF) and γ -(BEDT-TTF)₂PF₆. The temperature dependence of the spin susceptibility of the two salts shows that of typical paramagnetic insulators with low-dimensional antiferromagnetic interaction. The macroscopic magnetic behaviors are apparently similar to each other, and the absolute values of the intra-chain antiferromagnetic interaction, J_{intra}/k_B , of the two salts are also close to each other. However, their ground states and microscopic behaviors indicate obvious difference. ζ -(BEDT-TTF)₂PF₆(THF) undergoes an antiferromagnetic transition at around 5 K, while γ -(BEDT-TTF)₂PF₆ shows no magnetic long-range ordering down to 4 K. The ESR linewidth, ΔH_{pp} , of ζ -(BEDT-TTF)₂PF₆(THF) is almost temperature independent in the paramagnetic region. On the other hand, the ΔH_{pp} of γ -(BEDT-TTF)₂PF₆ gradually decreases as the temperature decreases. The low temperature electronic states of these salts are discussed in the aspect of the magnetic dimensionality.

[1] for example: T. Ishiguro, K. Yamaji and G. Saito, *Organic Superconductors, 2nd* (Springer-Verlag, Berlin/Heidelberg, 1998).

[2] T. Nakamura, K. Furukawa and T. Hara: to appear in J. Phys. Soc. Jpn. **76** (2007), and references therein.