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Fundamental Classification
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Free Electron Systems

single electron
energy

A

Band Fermi
gap
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Metal, conducting insulator



Interacting Many-Electrons

We can no longer describe physics in terms of
single electron

We cannot apply the “band picture” in general

We can still characterize the system in terms of
many-body excitation gap!

gapless=conductor gapped=insulator
Total energy continuum of
continuum of of the System excited states

excited states

I many-body gap
A

ground state . ground state



Different Cultures...
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Solid State Physics

Electrons form conducting metal by default
(e.g.in free space)

Some mechanism is needed for electrons to

form an insulator by opening a gap
(CDWV instability, etc.)



Statistical Mechanics

Many-body gap A = inverse “correlation time”
(in imaginary time formalism)

(O(1)0(0)) o ™27

Correlation length is often proportional to I/A

gapped (= insulator) < finite correlation length

off-critical

gapless (= conductor) < © correlation length

critical



Transverse-Field Ising Model
H:—Za;ag—gza;’g

(J:k)
gapped (off-critical) TFIM in d dimensions gapless (critical)
’ E
continuum of Classical Ising Model
in d+ | dimensions

excited states
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Stat Mech Point of View

Gapless, critical systems (= conductor)
are special, usually requires fine-tuning of parameter(s)

However, there are many gapless, critical systems
in condensed matter physics which apparently
do NOT require any fine-tuning

(Metals, phonons, .....)

Why?
There must be some mechanism to protect
quantum criticality (gaplessness)....



General Principles!?

Symmetries of the model
H = Z [ (c Ccr. + ckc]) + annk}

c; —elc; particle number

U(l) symmetry b
J J N = M ;
i ' EJ: ’

conserved

Noether’s theorem

Can we say something about the energy spectrum?
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Nambu-Goldstone Theorem

/‘/‘/“‘ . e.g. spin waves

Spontaneous breaking of a continuous symmetry (e.g. U(1))

“slow twist” *

Gapless excitations gapless (critical)

There are many gapless systems £
without a SSB (metals, etc.), however.
Any other mechanism for gaplessness?
yes, if there is also a
lattice translation invariance
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Lieb-Schultz-Mattis Theorem in |D

Lieb-Schultz-Mattis 1961, M.O.-Yamanaka-Affleck 1997,...

Number of particles: conserved < U(l) symmetry
Lattice translation symmetry +
spatial inversion or time reversal symmetry

e.g. | D spinless Hubbard model with periodic b.c. ¢1 = ¢
L—1 L—1

Lattice translation 7 Tc¢; 7T ' =cj1

Translation inv. T, H] =0
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LSM Variational Argument

Ground state H|Wo) = Eo|¥o)
(very complicated — we don’t need to know it exactly
its EXISTENCE is enough!)

. . : . 10,
N — 927 global U(l) transformation ¢ —7 ¢ &

“Slow twist” (NOT symmetry) U =exp (Z 27? nj)
j

oy | | _
UTe U = exp ( 7”3>Cj consistent with PBC ¢, = ¢

L 27140
UTCQU:eXp< 7; )cozco

211 L
Q Z/{TCLZ/{:eXp< 71; )cL:cL
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LSM Variational Argument

L—1 L—1
UHU = —t > (727 el g+ 2™ Eclejin ) + V'Y nnji
j=0 j=0
L—1 L—1
H=—t Z (C;r_|_163 + C;Cj_|_1) +V Z n;ing41
1=0 1=0
o0ri s . ) . expectation
f 9y — T RN N —> .
U ! ZSC ) ~ value vanishes

1 is a low-ener
] i _ U — O = / U gy
(Wo| (UTHU — H) |Ty) O(L) o) cate
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Does it mean anything!?

U|T,) could be (almost) identical to Vo)

Are they different!?

“filling factor”
TIWo) = 0| W) (particle # / site)
| | 2.inj N
Z/{TTZ/{:€27TZZjnj/LT:€27TVZT U/ — 2 p— f
U = ex Z 2mjn- U|Py) is a low-energy state
J different from |Yo)

| | if vis NOT integer!
T U|Wo)) = 0T (U|Wo))
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Consequences

If the filling factor v=p/q is non-integer

(p, g: coprimes)
there are g independent low-energy states including
the ground state

gapped (off-critical) gapless (critical)
E

continuum of

excited states

OR

| gap

g-fold degenerate
ground state

ground state
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Statement of LSM theorem

Quantum Many-Body System (in 1 D) with
- global U(1) symmetry
AND
- lattice translation symmetry
WITH a fractional (non-integer) filling factor v

- gapless excitations above the ground state
OR
- multiple, degenerate ground states below gap

- uniquegrewnd state below gar
~featureless (trivial) Trsuls

17
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Intuitive picture for the LSM theorem:

gapped phase needs the particles to be

“locked”, and the density of the particles
must be commensurate with the lattice.

1 particle/
unit cell
(= 2 sites)
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Intuitive picture for the LSM theorem:

gapped phase needs the particles to be

“locked”, and the density of the particles
must be commensurate with the lattice.
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Intuitive picture for the LSM theorem:

gapped phase needs the particles to be

“locked”, and the density of the particles
must be commensurate with the lattice.

O O 0O O O O O 1particle/
O 0 O 0 O 0 O |unitcel
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ON RON NON N
000000 @ o
C@O @O @O pfarices
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LSM for Spinful Electrons

Yamanaka-M.O.-Affleck 1997

Typical model: Hubbard model at half-filling

_ T
H — _tzcj—|—1,06j7g —I_ UZ”]?TTLJA/
3,0 |

J
Total electron filling (# per site): v=I (integer)
— LSM cannot be applied??

Nevertheless, vt=v;=1/2 (non-integer)
— ground-state degeneracy with gap
OR gapless
But we don’t know the nature of gapless excitations

19



Charge Gap and Spin Gap

“Spin-charge separation”
If the gapless excitations are genuinely spin excitations,
the system is (electrically) insulator but spin conductor
If the gapless excitations are genuinely charge excitations,
the system is (electrically) conductor but spin insulator

H=—tY ciii,Cio+UY njsniy  at half filling
7,0 |

J

Spin gap | Charge gap
gapless charge excitations Mott insulator
Luther-Emery Liquid gapless spin excitations

U
0
free electron metal /

20



Haldane “Conjecture” in 1981
H=J) ;-5

— T
S_ I /2’ 3/2’ 5/2’ EREL - The Nobel Prize in Physics 2016

GapleSS “Q uantum Critical” F. Duncan M. Haldane

« Born 1951 in London, UK

1 TI " : ! + Ph.D. 1978 from Cambridge

—_ — g University, UK

< S’L * SJ > CX T A i « Eugene Higgins Professor of Physics
/ a;“‘

at Princeton University, NJ, USA

r

5=1,2,3....

Non-vanishing excitation gap (“‘Haldane gap”)

Against the “common sense” at the time = “conjecture”
21



Spin System as Many Particles

Spin S: Sz =-S,-S+1,...,S-1,S M.O.-Yamanaka-Affleck
1997

|dentify, say, $2 = -§ state as “vacuum”
increase $2by | < add a particle (magnon)

S;:—S—Fnj

magnetization per site
m=(S;)=—-5+(n;) =-S5 +v

zero magnetization (ground state of antiferromagnet)

m = 0 , — g fractional filling if and
only if $ is half-odd-int

22



Why Haldane Gap!

Standard(?) view:
topological term of the O(3) non-linear sigma model
present only for half-odd-integer spin $

Intuitive(?) view:
half-odd-integer spin S: fractional (1/2+integer) filling
integer spin S: integer filling = can be “trivial” insulator
naturally obtained by generalizing the LSM theorem to
many particle systems [Yamanaka-MO-Affleck 1997]

m=(S;)=—-5+(n;) =-S5 +v
zero magnetization (ground state of antiferromagnet)
m = () v=25

23



Higher Dimensions!

o 7= (z,y) € 7?
—
Ly
Energy gain due to the twist O(sz) X LyLy = O(L_m)

Not small....2!
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Anisotropic Limit

LSM variational argument works, if

L,/L,—0

while Lz, Ly — o0 | as already pointed out in LSM(1961)

In two dimensions we consider a square lattice of N sites in the x-direction
and of M = O(N’) sites in the y-direction, where 0 < » < 1. The Hamiltonian

is assumed cyelic in the sense that

Su, M+1 — Sn, 1 (B-25a

and

SN+1, m Sl, m y (B-Qﬁ)

. - - k
i.c., the lattice is wrapped on a torus. We take for the operator O,

N M
0" = exp (zk > 2. nSz,,,m). | (B-27)

n=1 m=1

This operator twists the direction of all spins with the same z-coordinate by the
same amount. ¥, is constructed and its orthogonality to the ground state is

proved precisely as in one dimension. Instead of (B-24), one now has

9

W, | H | W) € By + (20

result.
A similar extension to three dimensions is obvious.

25

/N'"); (B-28)

so again there is no energy gap. Because the excitation energy of exact low-lying
states should not depend on the shape of the entire lattice, there should be no
energy gap for a lattice of N X N sites either. The particular state ¥; is un-
fortunately not sufficiently like an exact low-lying excited state to give this

But is this really
2D limit?

Can we show LSM

for isotropic 2D
limit?



Vector Potential: U(l) Gauge Field

Global U(1) symmetry in Quantum Mechanics
enhanced to U(l) gauge symmetry

Y(F) > Y(F)e?  w—p P(7) = (P’
Replace derivatives by “covariant derivative”

() —) (V- iA(7) ()

covariant derivative
(V —id(m) ()
IS gauge invariant

26



Meaning of Covariant Derivative
(7 + 0€j) — (7)

“parallel transport”

Even when there were no vector potential initially,
we can introduce a non-zero vector potential by
a gauge transformation = local change of the phase
Before comparing wavefunctions at two points, we need
the corresponding phase change (“parallel transport™)

27



Path Integral

extra phase

i B exp (z /P A‘(f)-df)

S due to the parallel transport
along the path

A b7

exXp (Z/ z‘Y(”F') - dr — / fY(F) : df’) — exp (z% ;Y(f’) . df’)
P P’ 0S
7{9 f‘f("'? ) - dr = / rot A - dii Stokes’ theorem
S S

28



Gauge Invariance

—

B =rotA (“curvature” = magnetic field) is gauge invariant

rot A’ = rot (%Y’ + ﬁé’) — rotA

7{ E(F)-dfz/rotff-dﬁ :/E-dﬁ:CI)(S)
0S S S

phase difference = magnetic flux through the enclosed area

Only the gauge-invariant magnetic (and electric)
field is physical

Vector potential has a gauge ambiguity and must be
unphysical (just a mathematical trick) — right?

29



Aharonov-Bohm Effect

particles do not touch
the magnetic field directly
= no effect within classical mech

But quantum interference is
still affected =

7 Aharonov-Bohm effect

Quantum system defined on the annulus does depend
on the flux, except when the Aharonov-Bohm phase is

¢ = 27 X integer

30



Unit Flux Quantum

| have implicitly chosen the units so that
h=1 e =1

Covariant derivative < kinetic momentum

(—mﬁ ~ eff(F)) b (7)

h
b= — =4.136 x 107> Wb
€

(twice the “unit flux quantum” commonly used in
superconductivity literature)



Spectrum of the Hamiltonian

the spectrum
is identical!

Energy

b — 0 generally depends b = 271(= D)
on ® (AB effect)

Nevertheless H(® =2m) # H(® = 0)

32



Large Gauge Transformation

If the Aharonov-Bohm flux is an integral multiple of
the unit flux quantum it can be eliminated by
a topologically nontrivial (“large”) gauge transformation

phase is multivalued
but wavefunction
IS unique

() = BT () =2

X
7"'_
Ly
For a many-body Hamiltonian on a lattice

H(® =27) =U, "H(® = 0)U,

U, = exp (? anf,) identical to “LSM twist”
vy operator!

33



“Anomalous Symmetry”

Spinless Hubbard in d dimensions have
- U(l) symmetry (particle # conservation)
- Translation symmetry

as exact symmetries.

However, U(l) gauge transformation together with the
translation produces an extra phase factor

-
U, 'T,U, = T, exp ([jm Z n,,?) =T, exp (2miL,v)

corresponding to
“mixed 't Hooft anomaly” in field theory

34



LSM in arbitrary dimensions

LSM 1961, Affleck-Lieb 1985,M.0.-Yamanaka-Affleck 1997,
M. O. 2000, Hastings 2004,...

Periodic (translation invariant) lattice = unit cell
U(l) symmetry = conserved particle number

V :number of particle per unit cell (filling fraction)

V=plq = “ingappability”

- system is gapless must be in a nontrivial phase!
OR

- gapped with g-fold degenerate ground states

sapped-wAth-HRiguecreund-state
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Recent Developments

nature
hvsi
p ySlCS PUBLISHED ONLINE: 14 APRIL 2013 | DOI: 10.1038/NPHYS2600

ARTICLES

Topological order and absence of band insulators
at integer filling in non-symmorphic crystals

Siddharth A. Parameswaran’, Ari M. Turner?, Daniel P. Arovas® and Ashvin Vishwanath'**

Non-symmorphic lattice with “glide symmetry’:
“effective unit cell” is half of the unit cell
%

oN: o0 N Voff = —
g 9 2

LSMOH-type restriction
even when p ¢ 7

36




Crystallographic Symmetries

Filling constraints for spin-orbit coupled insulators in
symmorphic and nonsymmorphic crystals

4“ Haruki Watanabe?, Hoi Chun Po®, Ashvin Vishwanath®<, and Michael Zaletel®’

" PNAS | November 24,2015 | vol. 112 | no.47 | 14551-14556
.'

Table 1. Summary of v,,;, for elementary space groups

Minimal filling
ITCno. Keyelements Al* Ent' Bbb* Manifold name
1 (Translation) 2 2 2 Torus
4 21 4 4 4 Dicosm
144/145 31/32 6 6 6 Tricosm
76/78 4, /45 8 8 8 Tetracosm
77 4, 4 4 4
80 4, 4 4 4
169/170 61/65 12 12 12 Hexacosm
171172 62/64 6 6 6
173 63 4 4 4
19 21, 24 8 4 8 Didicosm
24 21, 24 4 2 4
7 Glide 4 4 4 First amphicosm
9 Glide 4 4 4 Second amphicosm
29 Glide, 2, 8 4 8 First amphidicosm
33 Glide, 2, 8 4 8 Second amphidicosm

*The minimal filling required to form a symmetric atomic insulator.

TUmin Obtained in Extension to 3D Symmorphic and Nonsymmorphic Crystals.
Bounds are not tight for nos. 19, 24, 29, and 33.

*Umin Obtained in Alternative Method: Putting Sym-SRE Insulators on Bieber-
bach Manifolds. All bounds are tight.
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LSM for Discrete Symmetry

Neither the LSM “slow twist” or U(I) flux insertion
works for discrete symmetries, but
the generalization of the LSM holds!

[1D]
MPS-based “proof” Chen-Gu-Wen 201 |
Field-theory argument Fuji 2014
Mathematical proof Ogata-Tachikawa-Tasaki 2020

[2D and higher]
Po-Watanabe-ian-Zalatel 2017, Else-Thorngren 2020
Watanabe-Po-Vishwanath-Zalatel 2015
Yao-M.O. 2021
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Example: XY Z model

“XYZ” spin model on the square lattice of size L| X L,
H= ) (JxSiSh+ JySUSY + JzS2S%)
<

— =

7,7 )

On-site discrete symmetry of Z; X Z; (dihedral sym.)
(T-rotation of spins about x, y, and z axes)
Lattice translation symmetry T, T2

odd number of “spin /2" per unit cell
— ground-state degeneracy or gapless spectrum

39



PHYSICAL REVIEW B 99, 195132 (2019)

Anomalous domain wall condensation in a modified Ising chain

Gertian Roose,! Laurens Vanderstraeten,' Jutho Haegeman,' and Nick Bultinck?
' Department of Physics and Astronomy, University of Ghent, Krijgslaan 281, 9000 Gent, Belgium
’Department of Physics, University of California, Berkeley, California 94720, USA

—_ X L X
= E :CZ'—I,iHUi — MO; 011>
l

CZ
CZ
CZ
CZ

/

/

N\

/\/\>

)
) =)
)
)

40

does not have the
standard Z2 symmetry

(spin flip)



Anomalous Z2 Symmetry

[T 1I0 T 11] wep
CZo”
Sym. Commutes with SYm.

- 1000001000000

Hamiltonian!

»_

CZo”

41
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Consequences

The system is “ingappable” (gapless or g.s. degeneracy)

AFM LL

FM

|
-0.9

G.S. energy per site

| /L2
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| >

0 fh

Exact Diagonalization
with Python

up to L=21

consistent with
Conformal Field Theory
(quantum critical)



Summary

Metals are gapless and conducting, but this is rather
nontrivial from statistical mechanics point of view
Gaplessness (= quantum criticality, conductivity) is

achieved either by fine-tuning or some
“protection”

Lieb-Schultz-Mattis (LSM)-type theorems provide
powerful and general constraints, which often
protect quantum criticality in translation invariant

& charge conserving systems
Active topic of current research with numerous

generalizations
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