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Part |:
recap of what was known about “SPT"” in the 20th century

Part ll: recent progress

arXiv:2301.07899 Non-Invertible Duality Transformation Between
(PRB 2024) SPT and SSB Phases

Intrinsically/Purely Gapless-SPT
arXiv:2307.04/88

from Non-Invertible Duality Transformations

Linhao Li (ISSP— Ghent)
Yungin Zheng

(ISSP/IPMU— Stony Brook)




Haldane gap

Heisenberg antiferromagnetic chain
H=J)» S Sj
J

S=1/2,3/2, 5/2........

‘massless” = gapless, power-law decay of spin
correlations

S=1,2, 3, ...

‘massive” = non-zero gap, exponential decay of
spin correlations

Haldane conjecture (1981)



AKLT model/state

H=I 3|8 Sty (85 85)

3

Exact groundstate: (affleck-kennedy-Lieb-Tasaki 1987)

OO

o——=  Singlet pair of two S=1/2’s -“valence bonds”

@ Symmetrization of two S=1/2's = S=1

v/non-zero gap, exponential decay of correlations

(supporting the Haldang conjecture)



Haldane Phase and QPT

gap H = sz: (5’} - §j+1 + D(Sj)z) .

"Haldane
phase”

trivial phase
("large-D phase”)

D, o

/ D — oo
L D) = |000000...)
guantum phase transition

Why there is the transition?

Modern understanding: Hzldane phase is a SPT!
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Ground-State Phase Diagram and Magnetization Curves
of the Spin-1 Antiferromagnetic Heisenberg Chain
with Bond Alternation and Uniaxial Single-lon-Type Anisotropy

Takashi TONEGAWA*, Takeshi NAKAO! and Makoto KABURAGI?'**

Department of Physics, Faculty of Science, Kobe Unwersity, Rokkodai, Kobe 657
! Division of Physics, Graduate School of Science and Technology, Kobe University, Rokkodai, Kobe 657
2 Department of Informatics, Faculty of Cross-Cultural Studies, Kobe University, Tsurukabuto, Kobe 657

(Received June 6, 1996)
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Nontrivial Features of Haldane Phase

Catadadad

Open boundary condition :“edge state” of S=1/2  [Kennedy |990]

Sz = +| 0 0 -| 0 *

k—1

non-local “string” order 0%, = ’ 11i1|m (S% exp (z‘w Sf) S7)
j—k|—=o0 —

[den Nijs-Rommelse 1989]

l=7



J. Phys.: Condens. Matter 2 (1990) 5737-5745. Printed in the UK

Exact diagonalisations of open spin-1 chains

Table 1. The difference of the two lowest eigenvalues of the chain with open b

Tom Kennedy
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Received 3 January 1990

Abstract. We numerically compute the two lowest eigenvalues of finite length spin-1 chains
with the Hamiltonian H = Z[S, - S,., = (S, §,.:)’] and open boundary conditions. For a
range of §, including the value 0, we find that the difference of the two eigenvalues decays
exponentially with the length of the chain. This exponential decay provides further evidence
that these spin chains are in a massive phase as first predicted by Haldane. The correlation
length £ of the chain can be estimated using this exponential decay. We find estimates of & for

the Heisenbergchain (8 = 0) thatrange from6.7to 7.8 dependingont

infinite length.

conditions and L sites for several § > —4.

L

B=-030 B=-020 f=-0.10

B=000 =040

—
OO 0~ OB

11
12
13
14

0.039379
0.023224
0.011608
0.006364
0.003310
0.001774
0.000935
0.000497
0.000263
0.000140

0.171777
0.147423
0.082462
0.066161
0.040809
0.031059
0.020254
0.014880
0.010015
0.007200
0.004933

0.329668
0.328731
0.184574
0.178889
0.110734
0.102979
0.068391
0.061122
0.042723
0.036921

0.509170
0.546645
0.307786
0.330956
0.201879
0.212703
0.138331
0.141772
0.097142
0.096709
0.069165

1.331250
1.603914
0.927374
1.153717
0.696740
0.877509
0.548516
0.693475
0.445742
0.563294
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Figure 1. Plot of # In(s, _,/s,) as a function of 1/L, where 5, is the difference between the
two lowest eigenvalues. The intersection of these curves with the vertical axis gives the
inverse correlation length, so several correlation lengths are marked on the vertical axis.
The horizontal axis is 1/L, but the labels are values of L.



PHYSICAL REVIEW B VOLUME 40, NUMBER 7 1 SEPTEMBER 1989

Preroughening transitions in crystal surfaces and valence-bond phases
in quantum spin chains

Marcel den Nijs
Department of Physics, FM-15, University of Washington, Seattle, Washington 98195

Koos Rommelse
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 10 April 1989)

We show that disordered flat phases in crystal surfaces are equivalent to valence-bond-type
phases in integer and half-integer spin quantum chains. In the quantum spin representation the
disordered flat phase represents a fluid-type phase with long-range antiferromagnetic spin order.
This order is stabilized dynamically by the hopping of the particles and short-range spin-exchange
interactions. The mass of Néel solitons is finite. Numerical finite-size-scaling results confirm this.
We identify the order parameter of the valence-bond phase. The Haldane conjecture suggests a fun-
damental difference between half-integer and integer antiferromagnetic Heisenberg spin chains. We
find that disordered flat phases are realized in both cases, have exactly the same type of long-range
antiferromagnetic spin order, and are stabilized by exactly the same mechanism. They differ only in
the mathematical formulation of broken symmetry in the spin representation. We suggest experi-
mental methods of observing disordered flat phases in crystal surfaces.

D = = <o 0 0T - T - rr——- -

It is impossible to define local order parameters that

distinguish these two phases. The local order parameters rameter ¥, Eq. (2.8), which van-
of Sec. IT E become nonlocal string operators in the spin- : in the DOF and BCSOS flat

1 formulation (where the surface configuration is charac-

n

terized by the steps). Recall the Ising-type order parame- ,|iz $ s

\ l m =1

FART o) , (4.4)

and its square is the limiting value of the correlation

function, Eq. (2.7),

n+r10

G,(n)=(0 S,foexp im > S}

m=n0

z
n+n0

0). (4.5)
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Hidden Topological Order in Integer Quantum Spin Chains

S. M. Girvin

Department of Physics, Indiana University, Bloomington, IN 47405, USA
and

Daniel P. Arovas

, 0.8 T T T 7 [ S R | | N
The James Franck Institute, 5640 South Ellis Ave., Chicago 1L 60637, ’
= 0.0
Received June 8, 1988, accepted July 25, 1988 9/ m O
0.6 — A g(n) o g(n) —
- x -
3. Conclusions 0.4 - A - K
. . . : & O c _
We have investigated analogies between integer quantum - Coooood B
spin-chains and the fractional quantum Hall effect. Both - ]
systems appear to have disordered liquid ground states but . A A L
because of subtle topological effects, they both have an 2 — A A —
excitation gap. This topological order is not visible in the - A A A A )
ordinary two-point correlation function, but can be detected - A A A ]
by defining a special singular-gauge correlation function,. - _
0.0 I | ) L1 J 1 | | T | I
0 9 10

distance n
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PHYSICAL REVIEW B VOLUME 45, NUMBER 1 1 JANUARY 1992-1

Hidden Z, X Z, symmetry breaking in Haldane-gap antiferromagnets

Tom Kennedy
Department of Mathematics, University of Arizona, Tucson, Arizona 85721

Hal Tasaki
Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171, Japan
(Received 29 July 1991)

We show that the Haldane phase of the S =1 antiferromagnetic chain is closely related to the breaking
of a hidden Z, XZ, symmetry. When the chain is in the Haldane phase, this Z, X Z, symmetry is fully
broken, but when the chain is in a massive phase other than the Haldane phase, e.g., the Ising phase or
the dimerized phase, this symmetry is broken only partially or not at all. The hidden Z, X Z, symmetry
is revealed by introducing a nonlocal unitary transformation of the chain. This unitary transformation
also leads to a simple variational calculation which qualitatively reproduces the phase diagram of the
S =1 chain.

edge states

i : consequences of hidden Z2xZ2 symmetry
string order

Haldane(SPT) vs trivial phases <> SSB vs trivial phases

11



How it works

[ — G QT [simplified expression in
KT jl;[keXp (757 5%) M.O. 1992]

UxrS;Ur =exp | im » Sf | S5

1<

UKTSJCEUIT{T — S;U eEXP ZWZSZCE

g <l

Kennedy-Tasaki transformation is a well-defined unitary
for a finite chain with the open boundary condition

which we assume for the moment (will come back later)
12



KT transformation of H

H:J25j°§j+1—|—DZ(S;)2

J J

H = UgrHUL ¢
_ ']Z (Sx ”753-1—15 o 4 S;Jeiw(S;—l—Sf_H)Sg Sz 7,775‘7 sz_|_1> 4 DZ Sz

lacks the global SU(2) spin rotation symmetry, but still has

the discrete global symmetry (T-rotation about X, y, & z axes)
dihedral group D2 = Z; x £,



Consequence of Dual SSB (I)

Suppose that the full global D; symmetry of the dual system
is spontaneously broken

dual system: (575k) — const. #0 (k—j — o0)

original system: t

(S5 exp | im Z S7 | SE) — const. 20 (k— 7 — o0)

i<i<k

long-range “string order’!!



Consequences of Dual SSB (ll)

Full global D2 symmetry of the dual system is

l spontaneously broken

Dual system has 4-fold (quasi-)degenerate ground states

!

Original system also has 4-fold (quasi-)degenerate ground states
(only) for the open boundary condition

Edge state!



Modern View of the KT Duality

THE question lacking in 1990s:

When does the hidden Z;%XZ; symmetry breaking argument work!?

Pollmann-Berg-Turner-MQO, arXiv:0909.4059

Hidden ZyxZ; symmetry breaking is useful
iff the dual Hamiltonian is local (short-range int.)
< the original Hamiltonian has global Z,xZ; symmetry

If the Hamiltonian has the global Z,%XZ; symmetry,
the phase with the SSB of the hidden Z;%XZ; symmetry
is well-defined and separated from the trivial phase by

a quantum phase transition = Z,XZ, protected SPT!!
|6



Digression

Hidden Z, X Z, symmetry in quantum spin chains with
arbitrary integer spin

Masak: Oshikawati

Institute of Physics, University of Tokyo at Komaba, Komaba, Meguro-ku, Tokyo 153,
Japan

Received 9 December 1991, in final form 4 June 1992
_ -1 __ ' ZoT
V=V~ =] exp(inS; S§)
1<k
explicitly for several variants of the vBS-type states. ‘In the standard VBS state, the

hidden Zy x Z; symmetry breaks down when S is odd but remains unbroken when S
is even. Qur results for partially dimerized vBS states suggest that the hidden Z; X Z;

“Hidden Z; x Z; symmetry breaking” in Haldane gap phase
for S=| = nontrivial SPT [Gu-VWen 2009]

only if S is odd [Pollmann et al 2009]

|7



Kennedy-Tasaki Duality in 21st Century

Many of the nontrivial features of the “Haldane gap phase” were
recognized and unified as a consequence of
“hidden symmetry breaking” in 1990s
although the concept of SPT was (just) missing

Great progress in understanding SPT phases
since the discovery/proposal in 2009

Revisit the Kennedy-Tasaki duality with the modern understanding
- reformulation of the Kennedy-Tasaki duality
- applications, especially to construction of gapless SPTs



KT transformation on a ring!?

Ut S? U = exp (m Z Sf) Sz

1<

z <
UKTSL+1 SL—|—1

generator of global Z2xZ2 symmetry!
L
R* = exp (szSf) = (—1)%= S;A—l — (—1)tz Sf
[=1
u, =u, mod 2

t.=1t,+u, mod 2,

Dual spins obey:

19



Two Interpretations

|) boundary conditions for the original & dual spins are given
— only the “right” symmetry sector survives
— KT transformation is non-invertible/non-unitary

2) boundary condition (periodic/twisted) is an auxiliary degree
of freedom

— separate Hilbert spaces for periodic/twisted b.c.
— KT transformation is unitary on the extended Hilbert space

cf.) similar phenomena in Kramers-VWannier duality
only the “right” symmetry sector survives on a ring

Kramers-VWannier duality can be defined as
a unitary transformation on an open chain

20



Field-Theory Formulation

topological manipulations
S: gauging Z2xZ2
1

S ZsipxAr, Ag] = [HO(X,, Z)|? Z Zx[ahaz](—l)f)cz a1Aztazd
2y 2 a1,a2€ H1 (X2,Z2)

T:stacking a Z2xZ2 SPT

T : Zpv[Ay, Ao 1= Zx[Ay, Ag](—1)/x: 4142,

S L T
T CSSB - > Trivial < > SPTQ S

Kennedy-Tasaki = STS

how to implement this on lattice?

21



KT transformation for S=1/2

consider a system of two species of S=1/2: 0and T

L
Z2xZ2 symmetry generated by ~ Uos = H 0y H x_%-
1=1 =1

S: gauging by Z2xZ2 < Kramers-VWannier for O, T

+57 )+trsT,

+sT 4
J+§

N o T - 1 125:15?(:9\;
G =g 3 (1)

o o7
{sj_% ST}

1) HtesT+57(s7 1
2 2 2

l\3|+—l

E 57.,.57))

T: stacking with Z2xZ2 < “Domain wall decoration”
Zj 1 j(AJ 1_|_S _l_tT

Upw |{§f_%>§};r}> = (—1) 2 2 |{87_1,57}) -

NKT — NUDwN. .



Symmetry/ Twist Sectors

Symmetry sectors for O, T
usr = 0, | (even/odd under spin flip)

Twist sectors for O, T
to,r = 0, | (periodic/antiperiodic boundary condition on ring)

dual spin original spin
/ AT Y
(u0'7 U, taa t’r) — (uaa Ury Ur + 1o,y Uy + tT)

Similar to the original KT for S=1I t; — tz - Uy mod 2,

(in fact we have shown the equivalence between the KTs)

23



Construction of SPT

Two decoupled Ising chains in the ordered phase
L
Hqgp = — Z (Uf_laf + Tf_%Ti’i%)
i=1

L2x/Z2 fully broken spontaneously
Kennedy-Tasaki
duality mapping

| D “cluster model”: Z2xZ2 SPT

24



SPT-SSB Phase Transition

1
2

L z X __z z z X
H——E (7’. O; T 1+ 0, 1T, O'Z-—I—h()'i)

Z2xZ2 SPT critical point ~ £2 SSB (of T)
——*—_> h

4-fold degenerate g.s.
due to edge states
(on open chain)

2-fold degenerate g.s.
due to Z2 SSB

2-fold (exponentially) degenerate g.s.
due to edge states — “gapless SPT”

g [Scaffidi, Parker,Vasseur 201 7]



Duality Viewpoint

Hdualz_Z( .

1

Z2xZ2 SSB critical point ~ £2 SSB (of T)
——*_> h
4-fold degenerate g.s. 2-fold degenerate g.s.
due to Z2xZ2 SSB due to Z2 SSB

2-fold (exponentially) degenerate g.s.
remaining due to “spectator’” SSB of T

26



Intrinsically Gapless SPT

Verresen, Thorngren, Jones, Pollmann, 2019

Thorngren,Vishwanath,Verresen 2020
Li-MO-Zheng 2022, Wen-Potter 2022 etc.

“topological” features of the gapless SPT phase has no
counterpart in a gapped SPT

Entire global symmetry G: non-anomalous
subgroup Giow of G acts on low-energy sector anomalously
(cancelled by anomaly in the gapped sector)

27



Intrinsically Gapless SPT

_ _ z 2 y Y 2 2
Hssp+xx = E (Ti_%Ti+% Ti1Tip1 (7@—107,)-
i=1
' Nkt
L
. — E Z Lz Y og¥r9 S el
ngSPT — (Ti—%o-z Ti—l—% —I—Ti_%O'Z Ti-l—% _l_O-z—sz’—%O-z)
1=1

“intrinsically gapless SPT” protected by Z4 symmetry
generated by [J_V_

] [ T 7;—7T(1—'7'_aj
UO_ p— O-J VT — H e 1 71—
j .

1=1

)

D=

28



igSPT + Z4 symmetric perturbation

L
. _ E A r__2 y r, Y A xr Z xr xr

1=1 ? )
h respects the Z4 symmetry

the system is trivial in the limit h — oo
is the igSPT phase stable against a small h! phase diagram!?

+ h1” %) XY chain in a field

Transverse Ising chain

Both exactly solvable!



Phase Diagram

Ising SSB Ising trivial Ising trivial
XY critical (TLL) XY critical (TLL) XY trivially gapped

Intrinsically : Trivial : Trivially

gapless SPT E gapless SPT 1 gapped Phase
. o )
= h =2 h = oo
= (z=2)




Getting Rid of Gapped Sector?

Replace the gapped SSB in the dual system with a gapless system

L

h _ Yy y Y
Hyx7xxz = — Z <0'fo+1 +oj0;,, +hojo;, + Tiz_%Tii% + TiaTi + hTf_%TﬁQ .
1=1
L
Hi%gSPTpert = — Z (O'?:ZTix_i_%O'f+1 + ainiﬂ%(f%’H + hoiol | + TZ.Z_%O'?Tii_% + T?’_%afﬁi% + hTf_%TiﬂQ .
: .. . Intrinsically .
’ : Trivial : Y : ’
Zi5 SSB , . purely gapless 275 SSB
 gapless phase :
: SPT phase
< ® ® ® >
h=—o0 h=-—1 h =20 h=1 h = o0

(ipgSPT characterized by
symmetry charges in twisted sectors)
31



Summary
Nk

trivial + trivial ~ trivial

Z2 SSB + 72 SSB ———) 77x7 SPT

Z4 intrinsically
Z2 SSB + Z4 free boson CFTM gapless SPT

L2xZ2 purely
gapless SPT

Z2 free boson CFT + Z4 free boson CFT“ Z4 intrinsically
purely gapless SPT

Z2 free boson CFT + Z2 free boson CFT“

32



Recent Developments

arXiv:2311.90050 systematic classification of gSPT with dualities

Classification of 1+1D gapless symmeftry protected phases via topological holography

Rui Wen' and Andrew C. Potter’

' Department of Physics and Astronomy, and Stewart Blusson Quantum Matter Institute,
University of British Columbia, Vancouver, BC, Canada V6T 1Z1
(Dated: November 2, 2023)

arXiv:1803.02369, arXiv:2402.09520
duality for subsystem symmetries

PHYSICAL REVIEW B 98, 035112 (2018) Kennedy-Tasaki transformation and non-invertible symmetry in lattice models

beyond one dimension

Aswin Parayil Mana,"? Yabo Li (Z=¥ [%),"2 Hiroki Sukeno (B1¥f##%C)."»? and Tzu-Chieh Wei (&7 #)"2

'C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, New York 11794-3840, USA
Yizhi You,! Trithep Devakul,? F. J. Burnell,® and S. L. Sondhi’ ? Department of Physics and Astronomy, State University of New York at Stony Brook, New York 11794-3840, USA
YPrinceton Center for Theoretical Science, Princeton University, New Jersey 08544 (Dated: February 16, 2024)
2Department of Physics, Princeton University, New Jersey 08544, USA
3 Department of Physics, University of Minnesota Twin Cities, Minnesota 55455, USA

Subsystem symmetry protected topological order

M (Received 12 March 2018; revised manuscript received 27 June 2018; published 10 July 2018)

arXiv:2403.00905  duality for fusion category symmetries

Hasse Diagrams for Gapless SPT and SSB Phases with Non-Invertible Symmetries

Lakshya Bhardwaj, Daniel Pajer, Sakura Schafer-Nameki, and Alison Warman
Mathematical Institute, University of Ozford, Woodstock Road, Ozford, OX2 6GG, United Kingdom
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