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Quantum Many-Body Systems

From Kozuma Group (Tokyo Tech)
web page Solid crystal Optical lattice system

electron
periodic potential Periodic potential
made by ions made by optical
interference
(spinless) Hubbard model
H = [—t (C}L-Ck + C;;Cj) + VTLJTL]{}

(J,k)



It’s a hard problem!

Fermion: each site is either empty (0) or occupied (1)
A sites: Hamiltonian is 24X24 matrix
huge even for moderately large size /
cf. quantum computing

Numerical algorithms: great advancements
(Quantum Monte Carlo, Density-Matrix Renormalization
Group, Tensor Network, ... ) but still challenging

Exact solution: available only for the standard model in |D
(no longer exactly solvable in 2D and higher,
or by inclusion of next-nearest-neighbor coupling etc.)
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Quantum Many-Body Systems

Quantum fluctuations can drive the system at T=0
into different quantum phases, and cause quantum phase
transitions between quantum phases

gapped (off-critical) But there are gapless (critical)
. gapless systems £

continuum of without any .

excited states apparent fine-tuning...

(phonons, metals...)

| gap

/

\ Quantum ground state
. critical 7’

Domain-wall\\ ,’Flipped-spin

quasiparticles /’ quasiparticles

ground state

\

UL W s
” fig. by Subir Sachdev




General Principles!?

Symmetries of the model
H = Z [ (c Ccr. + ckc]) + annk}

c; —elc; particle number

U(l) symmetry b
J J N = M ;
i ' EJ: ’

conserved

Noether’s theorem

Can we say something about the energy spectrum?
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Nambu-Goldstone Theorem

/‘/‘/“‘ . e.g. spin waves

Spontaneous breaking of a continuous symmetry (e.g. U(1))

“slow twist” *

Gapless excitations gapless (critical)

There are many gapless systems £
without a SSB (metals, etc.), however.
Any other mechanism for gaplessness?
yes, if there is also a
lattice translation invariance
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Lieb-Schultz-Mattis Theorem in |D

Lieb-Schultz-Mattis 1961, M.O.-Yamanaka-Affleck 1997,...

Number of particles: conserved < U(l) symmetry
Lattice translation symmetry +
spatial inversion or time reversal symmetry

e.g. | D spinless Hubbard model with periodic b.c. ¢1 = ¢

L—1 L—1
L-1 o 177[ =1 Z (C;LHCJ + C;L'Cjﬂ) +V Z TeyT 41

Lattice translation 7 Tc¢; 7T ' =cj1

Translation inv. T, H] =0
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LSM Variational Argument

Ground state H|Wo) = Eo|¥o)
(very complicated — we don’t need to know it exactly
its EXISTENCE is enough!)

. . : . 10,
N — 927 global U(l) transformation ¢ —7 ¢ &

“Slow twist” (NOT symmetry) U =exp (Z 27? nj)
j

oy | | _
UTe U = exp ( 7”3>Cj consistent with PBC ¢, = ¢

L 27140
UTCQU:eXp< 7; )cozco

211 L
Q Z/{TCLZ/{:eXp< 71; )cL:cL
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LSM Variational Argument

L—1 L—1
UHU = —t > (727 el g+ 2™ Eclejin ) + V'Y nnji
j=0 j=0
L—1 L—1
H=—t Z (C;r_|_163 + C;Cj_|_1) +V Z n;ing41
1=0 1=0
o0ri s . ) . expectation
f 9y — T RN N —> .
U ! ZSC ) ~ value vanishes

1 is a low-ener
] i _ U — O = / U gy
(Wo| (UTHU — H) |Ty) O(L) o) cate
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Does it mean anything!?

U|T,) could be (almost) identical to Vo)

Are they different!?

“filling factor”
TIWo) = 0| W) (particle # / site)
| | 2.inj N
Z/{TTZ/{:€27TZZjnj/LT:€27TVZT U/ — 2 p— f
U = ex Z 2mjn- U|Py) is a low-energy state
J different from |Yo)

| | if vis NOT integer!
T U|Wo)) = 0T (U|Wo))
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Statement of LSM theorem

Quantum Many-Body System (in 1 D) with
- global U(1) symmetry
AND
- lattice translation symmetry
WITH a fractional (non-integer) filling factor v

- gapless excitations above the ground state
OR
- multiple, degenerate ground states below gap

- uniquegrewnd state below gar
~featureless (trivial) Trsuls

11

’»

0



Intuitive picture for the LSM theorem:

gapped phase needs the particles to be

“locked”, and the density of the particles
must be commensurate with the lattice.

1 particle/
unit cell
(= 2 sites)

O00OO0LOLO
QOOLOLOC
O00OO0LOLO
QOOLOOOC
OO0OOLOLO
QOOLOVOOU
OO0OOLOOO
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Intuitive picture for the LSM theorem:

gapped phase needs the particles to be

“locked”, and the density of the particles
must be commensurate with the lattice.

O O 0O O O O O 1particle/
O 0 O 0 O 0 O |unitcel
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Intuitive picture for the LSM theorem:

gapped phase needs the particles to be

“locked”, and the density of the particles
must be commensurate with the lattice.

O O 0O O O O O 1particle/
O 0 O 0 O 0 O |unitcel
"HON NON NON NS
ON RON NON N
000000 @ o
C@O @O @O pfarices
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Original LSM paper in 1961

ANNALS OF PHYSICS: 16, 407-466 (1961)
not about the famous theorem!?

Two Soluble Models of an Antiferromagnetic Chain

Fruiorr LieB, THEODORE SCHULTZ, AND DANIEL MaTTIS

Thomas J. Watson Research Center, Yorktown, New York

II. THE XY MODEL . .
Main Result:
A. FORMULATION
The first model consists of N spin 15’s (N even) arranged in a row and having Exact SOI uti on Of

only nearest neighbor interactions. It is

Hy = 210 + M8 8% + (1 = 1858, (2.1) S=1/2 XY chain
a’s and a'’s do not preserve this mixed set of canonical rules. However, it is b m in
possible to transform to a new set of variables that are strictly Fermi operators y aP P g to
and in terms of which the Hamiltonian is just as simple." Let f .
ree fermions
i—1
.= ex ' L PP Py 1
C; = exp [m ;a, a,]a, (Jordan'W|gner

13 transformation)



Uber das Paulische Aquivalenzverbot.

Von P. Jordan ond E. Wigner in Géttingen.

(Eingegangen am 26. Januar 1928))

Die Arbeit enthiilt eine Fortsetzung der kiirzlich von einem der Verfasser vor-
gelegten Note ,Zur Quantenmechanik der Gasentartung“, deren Ergebnisse hier
wesentlich erweitert werden. Es handelt sich darum, ein ideales oder nichtideales,
dem Paulischen Aquivalenzverbot unterworfenes Gas zu beschreiben mit Begriffen,
die keinen Bezug nehmen auf den abstrakten Koordinatenraum der Atomgesamtheit

des (Gases. snndern nnr den oewihnlinchan drniﬂim@nqinnnlnn Ranm heanntron  Nac

wird ern . . .
wenn wir die Gréfen a, at durch

dreidime:
plikation a,(q) = v(q").b, (q"),
kularer ( i(q, ‘r( ), p(Q’) } (31)
antwortli y () = bp 4).v(q);
entsprecl , '
'v(q)ﬁH{l——QN(q )} . (32)
" =q |
aefinieren. Hier ist also v (¢") das Produkt der Grofen 1 — 2 N(g")
fiir ¢' = ¢’ und alle vor ¢ kommenden ¢’. Es ist also v(g") eine

Diagonalmatrix, deren Diagonalelemente simtlich gleich 4 1 oder — 1
sind ; und es wird

[v (@) = 1. (83)
|4



Where was the LSM theorem??

Apparently, the authors themselves did not
think the theorem was too important.

They proved the theorem just for S=1/2 chain at
zero magnetic field...

Perhaps the theorem had drawn little attention
for more than 20 years after its birth in 1961
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Where was the LSM theorem??
Appendix....

APPENDIX B.)NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exact theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.

Apparently, the authors themselves did not
think the theorem was too important.

They proved the theorem just for S=1/2 chain at
zero magnetic field...

Perhaps the theorem had drawn little attention
for more than 20 years after its birth in 1961
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Haldane “Conjecture” in 1981

5=1/2,3/2,5/2, ..... %

The Nobel Prize in Physics 2016

I” F. Duncan M. Haldane

Gapless “Quantum Critica

* Born 1951 in London, UK

* Ph.D. 1978 from Cambridge

(AL ;

/r] L : University, UK

N 1 ; -

E i * Eugene Higgins Professor of Physics
S . e S . m — = ; at Princeton University, NJ, USA

( 7 iy |
a X .
i :

r

5=1,2,3.....

Non-vanishing excitation gap (“‘Haldane gap”)

Against the “common sense” at the time = “conjecture”

16



Affleck-Lieb 1986

Generalization of the original LSM theorem for $=1/2
to arbitrary spin quantum number $

Letters in Mathematical Physics 12 (1986) 57-69. 57
© 1986 by D. Reidel Publishing Company.

A Proof of Part of Haldane’s Conjecture S: half-odd-integer
on Spin Chains — gapless or

IAN AFFLECK™ and ELLIOTT H. LIEBX*

Departments of Mathematics and Physics, Princeton University, P.O. Box 708, Princeton, NJ 08544, U.S.A. 2 -fo I d g. S o d ege n e ra Cy
(Received: 10 March 1986)

Abstract. It has been argued that the spectra of infinite length, translation and U(1) invariant, anisotropic,

antiferromagnetic spin s chaing differ according to whether s is integral or 3 integral: There is a range of

parameters for which there is a unique ground state with a gap above it in the integral case, but no such

range exists for the 3 integral case. We prove the above statement for 4 integral spin. We also prove that

for all s, finite length chams have a unique ground state for a wide range of parameters. The argument was
extended to SU(n) chains, and we prove analogous results in that case as well.

integer S : no constraint from LSM

— may have a unique gapped ground state
consistent with HaIgLane conjecture!



Spin System as Many Particles

Spin S: Sz =-S,-S+1,...,S-1,S M.O.-Yamanaka-Affleck
1997

|dentify, say, $2 = -§ state as “vacuum”
increase $2by | < add a particle (magnon)

S;:—S—Fnj

magnetization per site
m=(S;)=—-5+(n;) =-S5 +v

zero magnetization (ground state of antiferromagnet)

m = 0 , — g fractional filling if and
only if $ is half-odd-int

18



Why Haldane Gap!

Standard(?) view:
topological term of the O(3) non-linear sigma model
present only for half-odd-integer spin $

Intuitive(?) view:
half-odd-integer spin S: fractional (1/2+integer) filling
integer spin S: integer filling = can be “trivial” insulator
naturally obtained by generalizing the LSM theorem to
many particle systems [Yamanaka-MO-Affleck 1997]

m=(S;)=—-5+(n;) =-S5 +v
zero magnetization (ground state of antiferromagnet)
m = () v=25

19



Why not in LSM?

APPENDIX B. NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exact theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.
The generalization to longer range interactions and higher-dimensional lattices
is Indicated. A further generalization to particles of spin # Y% and a discussion
of the ordering of excited state energy levels has been submitted for publication
in the Journal of Mathematical Physics by Lieb and Mattis. 7'

20



Why not in LSM?

APPENDIX B. NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exact theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.
The generalization to longer range interactions and higher-dimensional lattices
is Indicated. A further generalization to particles of spin # Y% and a discussion
of the ordering of excited state energy levels has been submitted for publication
in the (] ournal of Mathematical Physics by Lieb and Madttis. ) 7'

\ Perhaps refers to this paper

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962

Ordering Energy Levels of Interacting Spin Systems

Evuiorr LieB AND DANIEL MATTIS

Thomas J. Watson Research Center, International Bustness Machines Corporation, Yorktown Heights, New York
(Received October 6, 1961)
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Why not in LSM?

APPENDIX B. NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exact theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.
The generalization to longer range interactions and higher-dimensional lattices
is Indicated. A further generalization to particles of spin # Y% and a discussion
of the ordering of excited state energy levels has been submitted for publication
in the (/ ournal of Mathematical Physics by Lieb and Mattis. ) 7'

\ Perhaps refers to this paper

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962

Ordering Energy Levels of Interacting Spin Systems

Evuiorr LieB AND DANIEL MATTIS

Thomas J. Watson Research Center, International Bustness Machines Corporation, Yorktown Heights, New York
(Received October 6, 1961)

But no mention is actually made on
the generalization of LSM theorem?!

20



Maybe....

LSM in 1961 thought they can generalize their theorem
to general §,
but then realized the proof “fails” for integer S

So they scrapped the generalization
(until Affleck-Lieb paper in 1985,

but after Haldane conjecture)

.... perhaps they just missed the clue of
the “Haldane gap™??

21



Higher Dimensions!

o 7= (z,y) € 7?
—
Ly
Energy gain due to the twist O(sz) X LyLy = O(L_m)

Not small....2!

22



Anisotropic Limit

LSM variational argument works, if

L,/L,—0

while Lz, Ly — o0 | as already pointed out in LSM(1961)

In two dimensions we consider a square lattice of N sites in the x-direction
and of M = O(N’) sites in the y-direction, where 0 < » < 1. The Hamiltonian

is assumed cyelic in the sense that

Su, M+1 — Sn, 1 (B-25a

and

SN+1, m Sl, m y (B-Qﬁ)

. - - k
i.c., the lattice is wrapped on a torus. We take for the operator O,

N M
0" = exp (zk > 2. nSz,,,m). | (B-27)

n=1 m=1

This operator twists the direction of all spins with the same z-coordinate by the
same amount. ¥, is constructed and its orthogonality to the ground state is

proved precisely as in one dimension. Instead of (B-24), one now has

9

W, | H | W) € By + (20

result.
A similar extension to three dimensions is obvious.

23

/N'"); (B-28)

so again there is no energy gap. Because the excitation energy of exact low-lying
states should not depend on the shape of the entire lattice, there should be no
energy gap for a lattice of N X N sites either. The particular state ¥; is un-
fortunately not sufficiently like an exact low-lying excited state to give this

But is this really
2D limit?

Can we show LSM

for isotropic 2D
limit?



Many Particles on Periodic Lattice

For example, consider a many-particle system on the
square lattice of Lx X L, with periodic boundary conditions
assume particle number conservation (U(1) symmetry)

L 4 s 4 L 4 L 4 * *

assume that the system is gapped, and consider the
adiabatic insertion of unit flux quantum through the “hole”

9 M. O.2000



Adiabatic Flux Insertion

(i) Increase Aharonov-Bohm flux @ adiabatically from
0 to ®o(=21m) Wo) — V)

Hamiltonian for the final state is
different from the original one, but
we can

(ii) eliminate the unit flux quantum by
the large gauge transformation

U,H(® = 2m)U, " = H(P = 0)
U, = exp (21}7: Z:Im,,v)

Wy) — |Wg) — U, |¥y) variational argument replaced
by adiabatic process

25



Large Gauge Transformation

Initial Groundstate |¥g) Final State  |V) = F.|Vo)
T 0o) = ¢ W) T, W) = 7" |wp)
groundstate of H(0) groundstate of H(2m)

Large gauge transformation

W) = U, |V)) must be a groundstate of 7(0)

) _ 271
U = exp (% Zazan) U, .U, =T, exp ([jm Z n;)

27 ~

T, 0)) = ' (P 25 X))

26




total number of particles
(conserved)

We are usually interested in the thermodynamic limit
for a fixed particle density (particle # / unit cell) v

Suppose v == and choose L, to be a coprime with ¢
q
2T P
AP, = —L,L,v=2nL,-
Lx (2 Y q

Lattice momentum is defined modulo 211
momentum shifted if g # | (fractional filling)

The final state is different from the initial ground state
= ground-state degeneracy!

27



LSM in arbitrary dimensions

LSM 1961, Affleck-Lieb 1985,M.0.-Yamanaka-Affleck 1997,
M. O. 2000, Hastings 2004,...

Periodic (translation invariant) lattice = unit cell
U(l) symmetry = conserved particle number

V :number of particle per unit cell (filling fraction)

V=plq = “ingappability”

- system is gapless must be in a nontrivial phase!
OR

- gapped with g-fold degenerate ground states

sapped-wAth-HRiguecreund-state

28



Recent Developments

nature
hvsi
p ySlCS PUBLISHED ONLINE: 14 APRIL 2013 | DOI: 10.1038/NPHYS2600

ARTICLES

Topological order and absence of band insulators
at integer filling in non-symmorphic crystals

Siddharth A. Parameswaran’, Ari M. Turner?, Daniel P. Arovas® and Ashvin Vishwanath'**

Non-symmorphic lattice with “glide symmetry’:
“effective unit cell” is half of the unit cell
%

oN: o0 N Voff = —
g 9 2

LSMOH-type restriction
even when p ¢ 7

29




Crystallographic Symmetries

Filling constraints for spin-orbit coupled insulators in
symmorphic and nonsymmorphic crystals

4“ Haruki Watanabe?, Hoi Chun Po®, Ashvin Vishwanath®<, and Michael Zaletel®’

" PNAS | November 24,2015 | vol. 112 | no.47 | 14551-14556
.'

Table 1. Summary of v,,;, for elementary space groups

Minimal filling
ITCno. Keyelements Al* Ent' Bbb* Manifold name
1 (Translation) 2 2 2 Torus
4 21 4 4 4 Dicosm
144/145 31/32 6 6 6 Tricosm
76/78 4, /45 8 8 8 Tetracosm
77 4, 4 4 4
80 4, 4 4 4
169/170 61/65 12 12 12 Hexacosm
171172 62/64 6 6 6
173 63 4 4 4
19 21, 24 8 4 8 Didicosm
24 21, 24 4 2 4
7 Glide 4 4 4 First amphicosm
9 Glide 4 4 4 Second amphicosm
29 Glide, 2, 8 4 8 First amphidicosm
33 Glide, 2, 8 4 8 Second amphidicosm

*The minimal filling required to form a symmetric atomic insulator.

TUmin Obtained in Extension to 3D Symmorphic and Nonsymmorphic Crystals.
Bounds are not tight for nos. 19, 24, 29, and 33.

*Umin Obtained in Alternative Method: Putting Sym-SRE Insulators on Bieber-
bach Manifolds. All bounds are tight.
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LSM for Discrete Symmetry!?

Proofs/arguments for the original LSM do not work

IDLSM U = exp (QLM stf) Il_igeébl-SchuItz-Mattis
J

variational low-energy state

2D and higher
Adiabatic insertion of magnetic flux

(U(1) gauge field) M.O. 2000
Hastings 2004~

31



LSM for Discrete Symmetry!?

Proofs/arguments for the original LSM do not work

IDLSM U = exp (QLM stf) Il_ige:I-SchuItz-Mattis
J

2D and higher
Adiabatic insertion of magnetic flux

(U(TT gange=field) M.O. 2000
Hastings 2004~
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LSM for Discrete Symmetry
[1D]
MPS-based “proof” Chen-Gu-Wen 201 |
Field-theory argument Fuji 2014

Mathematical proof Ogata-Tachikawa-Tasaki 2020

[2D and higher]
Many statements for space group symmetries etc.
Po-Watanabe-Jian-Zalatel 2017, Else-Thorngren 2020
But the argument is either at abstract level, or relying on
Schmidt decomposition (OK for fixed width but...)
or “trivial” degeneracy of odd-site sytems

Watanabe-Po-Vishwanath-Zalatel 2015

So we will try to give a convincing physics argument...
32



Rigorous Proof for 1D in 2020

\

@Q Cornell University

arXiv.org > math-ph > arXiv:2004.06458 Search...
Help | Advanced S

Mathematical Physics

[Submitted on 14 Apr 2020 (v1), last revised 26 Apr 2020 (this version, v2)]

General Lieb-Schultz-Mattis type theorems for quantum spin chains
Yoshiko Ogata, Yuji Tachikawa, Hal Tasaki

We develop a general operator algebraic method which focuses on projective representations of symmetry group for
proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground
state (or, more generally, a pure split state), for quantum spin chains with on-site symmetry. We first prove a theorem for
translation invariant spin chains that unifies and extends two theorems proved by two of the authors in [OT1]. We then
prove a Lieb-Schultz-Mattis type theorem for spin chains that are invariant under the reflection about the origin and not
necessarily translation invariant.

Comments: 22 pages; v2: typos corrected and references added; the reference [OT1] in the abstract refers to arXiv:1808.08740
Subjects: Mathematical Physics (math-ph); Strongly Correlated Electrons (cond-mat.str-el); Operator Algebras (math.OA)
Report number: IPMU-20-0033

Cite as: arXiv:2004.06458 [math-ph]

(or arXiv:2004.06458v2 [math-ph] for this version)
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Example: XY Z model

Yuan Yao (ISSP—RIKEN) & M.O.
arXiv:2010.09244

“XYZ” spin model on the square lattice of size L| X L,
H= ) (JxSiSh+ JySUSY + JzS2S%)
(7,7
On-site discrete symmetry of Z; X Z; (dihedral sym.)

(T-rotation of spins about x, y, and z axes)
Lattice translation symmetry T, T2

We can “twist” the boundary condition along x-direction
by Tt-rotation about z-axis

34



Twisted Boundary Condition

HWYS = N (IxSESE + Jy SYUSY + J£SESE)

(7,7 ) &seam

+ Y (—JIxSESE — JySYUSY, + J2S:S%)

(7,7") Eseam

[Tla Htwist] # 0 but [Tla Htwist] — 0

=T [[ & trar)slat|on
+ discrete gauge tr.

rEseam

Global T-rotation of spins about x-axis
Rg — H 67;7TS"§ [RZUT’ Htwist] —

—

T 35



Two Symmetries under the Twisted BC

T1 — T1 H GZWS? Rg — H Giﬂsff

reseam T

Tle _ Rgfl(—l)%b « piTSF AT SE (_1)2sems;§€ms;

The two symmetry operators anticommute
if S is half-odd-integer and L, is chosen to be odd

Ground states (and all the eigenstates)
» of the Hamiltonian under the twisted b.c.
are exactly two-fold degenerate!

Hirano-Katsura-Hatsugai 2008
for U(l) symmetric systems,



What Does This Mean?

This argument does not apply directly to periodic b.c.
If the degeneracy is only an artifact of the twisted b.c.
it would not mean much.

But we argue that the degeneracy is “robust”
and present also for the periodic b.c.

>

37



Physical (Hand-Waving) Argument

If the ground state is gapped and unique under

the periodic b.c., the system should not have any order
(conventional or topological). The absence of the order
implies that the system should be insensitive to the twist

of the b.c. (in a large enough system)

Therefore, the exact ground-state degeneracy under the
twisted b.c. does imply some order (conventional or
topological), and the (quasi) ground-state degeneracy

under the periodic b.c.

38



More Formal (Less Hand-WVaving?) Approach

Imaginary time

| S S SN SR S S S o 9 e T f M . ey
) W O O O O Quantum .ran.s er. atrix
along spatial direction

L 4 ? Y ~ > —9—9—— B I |984
| 7 Ll etsuyaku
+——+—+ s T =e¢"
*r— ¢ 9o o o R Y

I 7 = Tre 11t
> o ¢ o o o o
* o e o o o o
- o +—+—+—+—+ lrotter-Suzuki decomposition
o~ D — path integral formulation

—_—

space 7 — Tre—BH ~ Ty (6—BHA/N6—5HB/N)N

39



Twisted BC and QTM

> o 9o o T >+
S - PO —
*—+—+— ) * o
. H -
o o -~
+—+—+—+ *—
* o o o e o
¢ o o o e o
e +——o
*— *—® * &

o o o o o o o o o

thist — Ty (RZB_L{}:‘)

global symmetry operator

k; (T-rotation about z)

unitary

cf.) “topological defect line” in CFT

40



Proof* by Contradiction

Suppose that the ground-state of the original Hamiltonian
is gapped and unique under the periodic b.c.

~

— the “ground state” |J,,) of the QTM Hamiltonian # must
be also unique
(cf. zero-temperature entropy in the thermodynamic limit)

Symmetry of H
— the “ground state” is also an eigenstate of R’

RT|Wo) = (o|Wo) Col =1
thist N <®O‘R§€—L17:L‘\I~jo> _ COZPBC thist c R—I-

up to exponentially small corrections Go =1

41



Proof* by Contradiction

gtwist <‘i’o|é§€_Llﬂ\‘i’o> — (,ZFBC Co=1
thist N ZPBC

up to exponentially small corrections

Then the zero-temperature entropy in the thermodynamic
limit must be zero under the twisted b.c.

—  H'"Ws* must have a unique ground state
Contradiction with the exact ground-state degeneracy

Of HtWiSt
— assumption (unique gapped g.s. of H ) was wrong
— H with the periodic b.c. must have degenerate ground

states!
42 *: not really rigorous



Thermodynamic Limit

Ruelle “Statistical Mechanics: rigorous results” 1988

ZAD) = Tr e expl— H(A)]
so that Z(A, ff) = ZA(pD), and we define
PA(®) = N(A)™ " log ZA(D)

2.3.3 THEOREM.? If ® € B, the following limit exists and is finite
P(®) = lim P,(®)

A—

Free energy density in the thermodynamic limit
at a fixed temperature
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Thermodynamic Limit

zero-temperature entropy

But we need / given by g.s. degeneracy d

log Z(B, L) ~ logd + ¢p 8L + O(exponentially small)

the O(I) quantity log d to be well-defined
in the limit B~L — o

cf.) “topological entanglement entropy”
Kitaev-Preskill / Levin-VWen

S, — (IL—’Y—%O(L—V), v >0

Furukawa-Misguich 2007
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What We Have Shown

As a simple example, consider “XYZ" spin model
on the square lattice of the size L| X [

M=) (JxSESEH+ JySUSY + JzS2S%)
(757" )
On-site discrete symmetry of Z; X Z;

(T-rotation of spins about x, y, and z axes)
Lattice translation symmetry T, T2

= for half-odd-integer spin (and L; is odd),

if the system is gapped, the ground-state must be
degenerate under the periodic b.c.

implying (conventional orgopological) order



Generalizations and Limitations

Similar constraint if the “spins’ within the unit cell
transforms a projective representation of the symmetry

SU(N) symmetry etc.

We can often obtain the ground state degeneracy > 2
for the twisted b.c., but at present we cannot deduce
the number of ground states for the periodic b.c.
(other than it must be > |). Maybe the number of the
degenerate ground states under the twisted b.c. is also
robust??
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Summary

- Lieb-Schultz-Mattis theorem is one of the few very
general yet powerful constraints on quantum
many-body systems

- Started as a humble result in an Appendix and had
been overlooked for many years, its generality has
been gradually appreciated

- Active topic of research for generalization, rigorous
proof, etc. (related to anomaly in field theory,
topological phases,....) also in recent years
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