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Vector Potential: U(1) Gauge Field
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ψ("r) → ψ("r)eiθ

Global U(1) symmetry in Quantum Mechanics
   enhanced to U(1) gauge symmetry

ψ("r) → ψ("r)eiθ("r)

Replace derivatives by “covariant derivative”

ψ("r) → ψ("r)eiθ("r)
covariant derivative

is gauge invariant

!∇ψ(!r)

!A(!r) → !A(!r) + !∇θ(!r)

(

!∇− i !A(!r)
)

ψ(!r)

(

!∇− i !A(!r)
)

ψ(!r)



Meaning of Covariant Derivative
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∂jψ(#r) = lim
δ→0

ψ(#r + δ#ej)− ψ(#r)

δ

“parallel transport”

Even when there were no vector potential initially,
   we can introduce a non-zero vector potential by
   a gauge transformation  = local change of the phase
Before comparing wavefunctions at two points, we need
   the corresponding phase change (“parallel transport’’) 

(∂j − iAj)ψ(#r) = lim
δ→0

ψ(#r + δ#ej)− ei
"A("r)·δ"ejψ(#r)

δ



Path Integral
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exp

(

i

∫

P

!A(!r) · d!r

)

extra phase

due to the parallel transport
along the path

exp

(

i

∫

P

!A(!r) · d!r −

∫

P ′

!A(!r) · d!r

)

= exp

(

i

∮

∂S

!A(!r) · d!r

)

∮
∂S

!A(!r) · d!r =

∫
S

rot !A · d!n Stokes’ theorem



Gauge Invariance
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rot !A′
= rot

(

!A′
+ !∇θ

)

= rot !A

(“curvature” = magnetic field) is gauge invariant!B = rot !A

Only the gauge-invariant magnetic (and electric)
   field is physical
Vector potential has a gauge ambiguity and must be
    unphysical (just a mathematical trick) — right? 

∮
∂S

!A(!r) · d!r =

∫
S

rot !A · d!n =

∫
S

!B · d!n = Φ(S)

phase difference = magnetic flux through the enclosed area



Aharonov-Bohm Effect
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Φ

particles do not touch
  the magnetic field directly
  ⇒ no effect within classical mech

But quantum interference is
still affected ⇒

    Aharonov-Bohm effect

Quantum system defined on the annulus does depend
  on the flux, except when the Aharonov-Bohm phase is 

Φ = 2π × integer

x



Unit Flux Quantum
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I have implicitly chosen the units so that

! = 1 e = 1

Covariant derivative ⇔ kinetic momentum
(

−i!!∇− e !A(!r)
)

ψ(!r)

exp

(

i
e

!

∮

∂S

!A(!r) · d!r

)

= exp

[

2πi
Φ(S)

Φ0

]

Φ0 =
h

e
= 4.136× 10

−15
Wb

(twice the “unit flux quantum” commonly used in 
superconductivity literature)



Spectrum of the Hamiltonian
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Energy

Φ = 0
generally depends
on Φ (AB effect)

Φ = 2π(= Φ0)

the spectrum
is identical!

H(Φ = 2π) != H(Φ = 0)Nevertheless



Large Gauge Transformation
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Ux = exp

(

2πi

Lx

∑

!r

xn!r

)

If the Aharonov-Bohm flux is an integral multiple of
  the unit flux quantum it can be eliminated by
  a topologically nontrivial (“large”) gauge transformation

ψ("r) → ψ("r)eiθ("r) θ("r) = 2π
x

Lx

phase is multivalued
but wavefunction
 is unique

For a many-body Hamiltonian on a lattice

H(Φ = 2π) = Ux

−1
H(Φ = 0)Ux



Quantum Many-Body Systems
Quantum fluctuations can drive the system at T=0 
into different quantum phases, and cause quantum phase 
transitions between quantum phases

E

gap
ground state

continuum of 

excited states

gapless (critical)gapped (off-critical)

11



Adiabatic Flux Insertion
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Φ

Let us consider a gapped many-body system, and
 assume that the gap does not close by the  AB flux Φ

nontrivial assumption, but
generally true for insulators in 
   d ≦ 2       (to be discussed later)

physically reasonable even for d ≧ 3 

and I am not aware of a 
counterexample within short-range 
Hamiltonians but can’t prove either

Under the assumption, we can insert a unit flux quantum
  adiabatically: ground state remains ground state



After the Flux Insertion
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H(Φ = 2π) = Ux

−1(Φ = 0)Ux

The spectrum of the Hamiltonian must be identical
   to the initial one by the large gauge invariance

Because of the adiabaticity, starting from the ground state
  at Φ=0, we must come back to the ground state at Φ=2̟

So, we just come back to the same ground state
  as the initial state?
  But sometimes you CANNOT come back to the same
    state ⇒  ground-state degeneracy!

                        (or the system is actually gapless)



Fractionalization
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Condensed matter: made of protons, neutrons, electrons…
    all the constituent particles have
                 (integral multiples of) the unit charge e

But some systems have “fractionalized quasiparticles”
     which carry a fraction of the unit charge e
These are collective excitations of many constituent 
particles (electrons), not “broken pieces” of an electron

We can generalize the notion of “charge” beyond the
 electric charge, for any locally conserved quantity
e.g.  Sz+[electric charge/(2e)] is integer for an electron
so “spinon” or “holon” are fractionalized w.r.t. this “charge”
  (introduce a fictitious gauge field coupled to the “charge”)



Gapped Fractionalized Phase
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We assume that

- microscopically the system is made of the constituent 
particles with the unit charge

- the system is gapped (and the gap is stable against Φ)

- the system has quasiparticle/quasihole with a fractional 
charge ± p/q

- we can create a quasiparticle/quasihole pair by a local 
perturbation

- quasiparticle/quasihole can be moved freely 
             (i.e. they are not fractons)

And see what are the consequences, using a 
gedankenexperiment M.O. and T. Senthil, PRL 2006



Flux Insertion Operation
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x

adiabatic insertion
of unit flux quantum

uniform gauge:
   vector potential

is defined similarly for the y direction

Define

Fx = T e
−i

∫
T

0
H(Ax=

Φ0t

TLx
)dt

adiabatic time evolution



Pair Creation/Annihilation
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x

define

creation of
 quasiparticle/hole pair

“dragging” the quasiparticle/hole to 

direction

pair-annihilate the quasiparticle/hole

as a time evolution w.r.t.
  certain time-dep. Hamiltonian
representing



AB Effect for the Quasiparticle
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With a unit flux quantum through the hole,
  there is no AB effect for the constituent particles 
(electrons) because the AB phase is 2̟ × integer,
which is unobservable

Nevertheless, for the quasiparticle carrying the
fractional charge p/q, the unit flux quantum is “nontrivial”, 
giving the AB phase = 2̟ p/q

quasiparticle dragging in the presence of
                      the unit flux quantum
  (relation among 3 operators → can’t say anything yet)

Tx(Φ0)Fx = FxTx(0)e
2πip/q



AB Effect for Quasiparticle
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Because Tx is defined by an appropriate time evolution
  in terms of the microscopic Hamiltonian,

Tx(Φ0) = Ux

−1
Tx(0)UxHλ(Φ0) = Ux

−1
Hλ(0)Ux

Tx(0)F̃x = F̃xTx(0)e
2πip/q

adiabatic flux insertion then
  eliminate the flux by the large gauge tr.
changes the eigenvalue of         !!

You come back to a different ground state
   ⇒  ground-state degeneracy (at least q-fold)

Tx(0)
F̃x ≡ UxFx

Tx(Φ0)Fx = FxTx(0)e
2πip/q



Topological Order
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system on 2d manifold with
   genus g (g “holes”)
we can apply the flux-insertion
  argument for each “hole”

ground-state degeneracy ≥ q
g

for bosons/fermions
ground-state degeneracy ≥ q

2g

Ground-state degeneracy which depends on the topology
        “topological degeneracy”
                   — signature of the “topological order”
  Fractionalization requires topological order

Φ1

Φ2



Summary
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Aharonov-Bohm effect:
   important also for many-body systems

Unit flux quantum is equivalent to zero flux
   with respect to the AB effect: the equivalence is
   shown explicitly by the “large gauge transformation”

Adiabatic insertion of the unit flux quantum in
  a gapped system: should bring back a ground state
  to a ground state, but under certain conditions, 
  the final state cannot be identical to the initial state 
    Example: system with a fractional charge
                     ⇒ topological ground-state degeneracy


