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Conformal Field Theory

Scale Invariance at the Ciritical Point

Locality of the Hamiltonian/Action

+

Invariance under conformal transformation
(locally different scale transformation)

|+1 Dimension:
conformal transformation < complex analytic function

o-dimensional “symmetry” (Virasoro Algebra)

What can we deduce from the ®©-dimensional symmetry?
“Conformal Field Theory (CFT)”

2



Free Boson CFT

Also known as “Tomonaga-Luttinger Liquid”
in condensed matter physics!

1 K
L= (0,0)° L = %(aue)Q
“T duality”
O~ @+ 0~ 0+ 2m
K:*Luttinger parameter”
b= \;% correspor?ds to the | i = VIO
“compactification radius”
G~ in hep-th literature 0~ 21VEK

@ 3



This Talk

| will discuss some of the applications of the CFT
to condensed matter/statistical physics (in |+1 Dim)
focusing on
free boson CFT (aka Tomonaga-Luttinger Liquid)

Most of the “theory” part is rather old

But we are seeing interesting developments,
thanks to recent advances in numerical algorithms



BKT Transition

Hxy = —J ) cos(ti —0;) Classical 2D XY model
(i)

Low-T (BKT) Phase T, High-T (Disordered) Phase
T

FPTTY ] SIS
ﬁ@@@ﬁ transition Q/@@ %@
g 17[7%37 | =Y,

= (cos 6;,sin 6,

(8i - §j) (%)n (57 - 85) o< exp (—g)

power-law decay . exponential decay




Scientific Background on the Nobel Prize in Physics 2016

TOPOLOGICAL PHASE TRANSITIONS AND

TOPOLOGICAL PHASES OF MATTER

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

Prototype: Berezinskii-Kosterlitz- Thouless Transition

Canonical model: 2D classical XY model

Hxy = —JZCOS(QZ' —0;)
()



Vortex in the 2D XY model

XY spin goes back to itself by 21t-rotation =

existence of defect (vortex)

,},,‘é“\\\ \\\\‘ﬂ‘.‘_,‘,’
’,},,4-‘\\\\ \\\\\‘*’,//
”,’,*‘\\\\ \\\\\“,,,’
VVV//"‘\\\\ **‘\\‘*//yy
***"}\NNAA 44##\\}"**
***ﬁ*\/lll4 444441\*”**
“‘\\*,//41 AAA//,\\\“
\\\\\,'///I /////_y.,_\\\\
\\\\\..,.yar//l ////r.y.,,,\\\\
U U U AR A 14 7 7 7 > > o 2 1y
U U U . A A 7 7 7 7 > > > 2 a w3
attraction
vortex M antivortex

v



BKT Transition

Low-T phase : vortex and antivortex form a pair

cf.) formation of atoms by nuclei and electrons
vortices are effectively absent at lengthscales larger than the pair size

High-T phase - vortices/antivortices dissociate from pairs and

move freely
cf.) plasma state formed by dissociation of nuclei/electrons

<§z ' §J> X €XP (—g)



Sine-Gordon Field Theory for BKT

B 1
- 2K

0 angle of the XY spin e

dual (mutually non-local)

1 . ling dimension 2/K
2 marginal at K=2

Single vortex creation / annihilation operator

L (0,0)° — yc(0,9)° + yvV

yyv  vortex fugacity
yx renormalization of Luttinger parameter K

9



Kosterlitz RG Flow

. Yv vortex fugacity

spin-wave stiffness
YH

+ c=1

Luttinger parameter K=2 (vortex operator marginal)

10



Why CFT?

Free boson CFT is exactly solvable (Gaussian free field)

Actually, the BKT transition was predicted and
the Kosterlitz RG flow was derived without
CFT techniques

Nevertheless, numerical study of the BKT transition
is rather challenging (even though it is “well-understood™)
and CFT ideas turn out to be practically very useful!



2D XY Model

HXY — —JECOS(@; — (93)
(i7)

- Classical spin model with positive Boltzmann weight
= no sign problem

- Just 2 dimensions
- Efficient cluster algorithms available

Easily studied with Monte Carlo, right?

12



Journal of the Physical Society of Japan 81 (2012) 113001 LETTERS
http://dx.doi.org/10.1143/JPSJ.81.113001

Large-Scale Monte Carlo Simulation of Two-Dimensional Classical XY Model
Using Multiple GPUs

Yukihiro Komura™ and Yutaka OxaBg’

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
(Received August 27, 2012; accepted September 24, 2012; published online October 12, 2012)
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Large-Scale Monte Carlo Simulation of Two-Dimensional Classical XY Model
Using Multiple GPUs

Yukihiro Komura™ and Yutaka OxaBg’

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
(Received August 27, 2012; accepted September 24, 2012; published online October 12, 2012)
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Kosterlitz RG Flow

.Yy vortex fugacity

spin-wave stiffness
YH

+ c=1

Luttinger parameter K=2 (vortex operator marginal)
BKT transition: ¥v =Y =9 slow decay
1 1

a9 [l InL Jlog=-corrections



Should We Care?

We already know the exact exponents at the BKT
transition, thanks to RG (or CFT)

But for “practical” purposes, determination of the critical
point (which is non-universal) can be important

The “brute-force” calculation already gives T, for 3 digits,
which might be enough in practice

However, in order to elucidate more complicated systems,
it is highly desirable to develop a more efficient method
(even the universality class can be controversial!)



CFT for 1+ID Quantum Systems

Interestingly, the difficulty of the logarithmic corrections
in numerics was “solved” first for |+1D quantum systems

In condensed matter physics,a quantum system
are usually defined in terms of a Hamiltonian

In CFT, we can formulate the spectrum of the Hamiltonian
by a conformal mapping between
a cylinder and infinite plane




State-Operator Correspondence

The conformal mapping also implies a one-to-one
correspondence between quantum states and operators

Energy eigenvalue of a finite system (under periodic b.c.)

2
E, — Ey = %xn [Cardy |984]

L: system size (length)
Xn: scaling dimension of the (primary) operator

Scaling dimensions (critical exponents)
can be extracted from the spectrum!



Spectrum of Perturbed CFT

H ="Hcrr + Z Un / b, (r) dr [Cardy 1986]

2
E, — FEy= fﬂ- (ZIZ‘n -+ Z CnnmymLQ_xm -+ .. )

cimn : Operator Product Expansion coefficient
b b, ~ Z ClmnPn

The coefficients of the perturbations can be also
extracted from the finite-size spectrum!

|18



BKT Transition in S=1/2 XXZ Chain
= Z (57571 + 57571 + AS7 5711

Single vortex creation/annihilation operator

. = —

cos2¢ ~ (—1)7S; - S;41

sin 2¢ ~ (—1)7 5%

Forbidden in Hamiltonian by the translation symmetry!

(Haldane 1980 — “Haldane conjecture”
related to Lieb-Schultz-Mattis theorem etc.)

The leading (most relevant) perturbation is thus
double vortex creation/annihilation op. cos 4¢

19



BTK Transition in S=1/2 XXZ Chain

: (augb)Q — ?/K(a,ugb)2 +yyV V = cos4¢

.Yy double vortex
. fugacity

L

B 2T K

spin-wave stiffness

Luttinger parameter K=1/2
(double vortex operator marginal)

20



BKT Transition in S=1/2 XXZ Chain

Ho=) (87871 + 878, + AS;S))

BKT transition at A= (SU(2) symmetric point)
IR fixed point at the BKT transition:
Free boson (Tomonaga-Luttinger Liquid) at K=1/2
equivalent to Level | SU(2) Wess-Zumino-Witten

Effective theory in the vicinity of the BKT transition
1 1

L 1R
R

L=LNW 1 gJ* -JR+t< JEJf+J£Jf“>

yv =g+t yc =g — 1

BKT transition & t=0 < SU(2) symmetry

21



Level Spectroscopy

Determination of the critical point from the
finite-size spectrum [Okamoto-Nomura 1994, ...]

“Double vortex” BKT transition at K=1/2 can be identified
by SU(2) symmetry of the finite-size spectrum!

State-operator correspondence and
Finite-Size Scaling in CFT [Cardy 1984, 1986]

2
E, — Ey = % (a;'n + ) ConmYm LT A+ )

BKT transition

Energy levels form SU(2) singlet, triplet, ...

22



|D S=1/2 XXZ vs 2D Classical XY

1
L= (0u®)” — Y (0u®)” + yv'V

21K
S=1 XXZ
S=1/2 XXZ Nomura-Kitazawa 1998 Classical XY

K=1/2 (SU(2)i WZW) K=2

V ~ cos2¢
V ~ cos4o

single vortex op.
double vortex op.

hidden SU(2) triplet
SU(2) triplet (degenerate at BKT) o590 in 26,

n* ~ cosf, n? ~sinf, n® ~ sin2¢ half-vortex Op.

(eigenstate under
- antiperiodic b.c.)



J. Phys. A: Math. Gen. 31 (1998) 7341-7362. Printed in the UK PII: S0305-4470(98)88524-7

SU (2)/Z, symmetry of the BKT transition and twisted
boundary condition

Kiyohide Nomuraj and Atsuhiro Kitazawafi

T Department of Physics, Kyushu University, Fukuoka 812-81, Japan
T Department of Physics, Tokyo Institute of Technology, Tokyo 152, Japan

Received 20 October 1997

Abstract. The Berezinskii—Kosterlitz—Thouless (BKT) transition, the transition of the two-
dimensional sine-Gordon model, plays an important role in low-dimensional physics. We relate
the operator content of the BKT transition to that of the SU(2) Wess—Zumino—Witten model,
using twisted boundary conditions. With this method, in order k — 1 to determine the BKT
critical point, we can use the level crossing of the lower excitations instead of those for the
periodic boundary case, thus the convergence to the transition point is highly improved. We
verify the efficiency of this method by applying it to the § = 1, 2 spin chains.



Level Spectroscopy for 2D Stat Mech

Level spectroscopy has been developed for quantum |D,
but why not for 2D stat mech models (such as XY)??

|D quantum Hamiltonian &

Transfer matrix for 2D stat mech

Continuous spin:
“infinite dimensional local Hilbert space”
can be discretized, but still the dimension is too
large for exact diagonalization

25



Search...

arXiv.org > cond-mat > arXiv:2105.11460

Help | Advance

Condensed Matter > Statistical Mechanics

[Submitted on 24 May 2021]
Resolving the Berezinskii-Kosterlitz-Thouless transition in the 2D XY model with

tensor-network based level spectroscopy
Atsushi Ueda, Masaki Oshikawa

Berezinskii-Kosterlitz-Thouless transition of the classical XY model is re-investigated, combining the Tensor Network Renormalization (TNR) and the
Level Spectroscopy method based on the finite-size scaling of the Conformal Field Theory. By systematically analyzing the spectrum of the transfer
matrix of the systems of various moderate sizes which can be accurately handled with a finite bond dimension, we determine the critical point
removing the logarithmic corrections. This improves the accuracy by an order of magnitude over previous studies including those utilizing TNR. Our
analysis also gives a visualization of the celebrated Kosterlitz Renormalization Group flow based on the numerical data.

Subjects: Statistical Mechanics (cond-mat.stat-mech)
Cite as: arXiv:2105.11460 [cond-mat.stat-mech]
(or arXiv:2105.11460v1 [cond-mat.stat-mech] for this version)

Submission history

From: Atsushi Ueda [view email]
[vl] Mon, 24 May 2021 18:00:01 UTC (976 KB)

Atsushi Ueda
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Level Spectroscopy for 2D Stat Mech

Level spectroscopy has been developed for quantum |D,
but why not for 2D stat mech models (such as XY)??

|D quantum Hamiltonian &

Transfer matrix for 2D stat mech

Continuous spin: series expansion of Boltzmann weight

) Z ‘ n(B), truncated to -15=n=15

n=——oo

Transfer matrix still “too large” to be diagonalized
= we utilize Tensor Network Renormalization

(We used Loop-TNR)

27



TNR Construction of Transfer Matrix

SN\
NSNS
SN
i o L

— —

Boltzmann weight at L = \ﬁn

. n+1
Boltzmann weight at L =4/2

after n steps, a single tensor represents
a square block of linear size L = V2n

contract horizontal indices
P = transfer matrix in vertical direction

___________ _ _LEZ(L)
A =e

28



ldentifying T with Level Crossing

L=32
e ”9
SPpIN-wave -+, . + W2 D=40
P . 0as6 { . COS 2(9, sin 26 W: D=44
excited states R
. . + Vi, D=40
under periodic b.c. o 0454 .. e
'% | 1 Vi, D=48
0.452 -
£ *,
g 0.450 - . T
o L
ground state under B ous| I
o o o S111
antiperiodic b.c. ® e
0.8900 0.8905 0.8910 0.8915 0.8920 0.8925 0.§930 0.8935 0.8940
T

This procedure eliminates
logarithmic corrections
to all ordersing

extra degeneracy
forming SU(2) triplet
~ BKT transition

29



0.8955 A

08950 1

0.8945 -

0.8940 -

0.8935 -

Remaining Finite-Size Effect

089301 ¢

2
%
40
“« |=4816,32
48 O, 9
:
0000 0005 0010 0015 0020 0025 0030
1/a(L)L?

Extrapolate to L=

30

Level crossing point
weakly depends on the
system size L

Effect of irrelevant
perturbations
T T TT,...
T: holomorphic part of the
energy-momentum tensor

1
T ~T. + COHSt.ﬁ



. 089288 -

Dependence on Bond Dimension D

0.89294

0.89292 -

0.89290 -

0.89286 -

08928441 |

0.89282

Q

o<

275 300 325 350 375 400 425 450 475

D

31

Our final estimate
1.=0.892943(2)



Effect of Finite Bond-Dimension

Finite bond dimension D « finite “correlation length”
£p ~ 0.3D"

k= 1 162+1) [Pollmann et al. 2008]

o > L low-energy finite-size spectrum almost exact!

¢p < I low-energy spectrum still reasonably accurate,
but some error due to the finite D

32



. 089288 -

Ic dependence on D

0.89294

0.89292 -

0.89290 -

0.89286 -

08928441 |

0.89282 -

Q

275 300 325 350 375 400 425 450 475

D

33

D=48 gives ¢~54
enough for up to =32

D=28 gives ¢~26

too small for L=32
BUT....



Ic dependence on D

089294{ A ; 9
: D=48 gives £~54
0.89292 -
enough for up to L=32
0.89290 -
., 089288 - , %
L D=28 gives £~26
0.89286 -
oaszea| [ | ~ | 0-4 too small for [=32
] 1 comparable to the error BUT....
in the best existing estimates!

275 300 325 350 375 400 425 450 4715

D
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Error in (Loop-) TNR

(Loop-) TNR is often used to construct the “fixed point”
tensor, which would describe the large scale behaviors,
by iterating TNR many times

This approach has given accurate results for large systems,

but small errors due to the finite bond dimension remain

[A. Ueda & M.O,, in preparation]

In our approach, we study the spectrum of finite-size

systems with TNR.TNR is almost exact when the system

size is less than the effective correlation length.

TNR calculation of the finite-size spectrum
+ Level Spectroscopy — better accuracy

34



Estimates of T,

Monte Carlo(1979)[35 0.89

Monte Carlo(2005)[36 0.8929

Monte Carlo(2012)[37 0.89289

Monte Carlo(2013)[38 0.8935

Series expansion(2009)[39] 0.89286
HOTRG (2014)[40 0.8921
VUMPS(2019)[41] 0.8930
HOTRG (2020)[42] 0.89290(5)
present work 0.892943(2)

TABLE I. Comparison of the estimated critical temperature
of the 2D classical XY model.
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Kosterlitz RG Flow

You must have seen this diagram many times....

.Yy vortex fugacity

spin-wave stiffness

36



Kosterlitz RG Flow

You must have seen this diagram many times....

.Yy vortex fugacity

spin-wave stiffness
YH

c=1

but have you really seen the RG flow?

36
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ELSEVIER Nuclear Physics B 522 [FS] (1998) 533-549

Low energy effective Hamiltonian for
the XXZ spin chain

Sergei Lukyanov !

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849, USA
L.D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow, Russia

Received 19 February 1998; accepted 18 March 1998

“vacuum energy’’ under the twisted boundary condition
with the twist angle O [notation clash...]

1 ( 3 52 (. 7
SRGZ——— 1 ~ 2 v __ ol - 2 T 2
A 83”‘“} T3 {1 >, T 3817 38181

st [ g2 g 2 g 2
+'——|12gi —8||8i} + —-{1 THLUPE N S ., L

4
2 > T3 T4 T3 32}+0(g)’

(4.6)
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Extrapolating Lukyanov’s Result

In our notations, the energy levels would be given by

2
En —E() — %azn

ye 1011,

1
+1260 — | :
e T20 =5 =y TG T gw
_ Ly 1, 2y, Yk 1 2
6——7’¢ 330,1/2— 2 | 4 ! S(y’C yV) | 16 64y’CyV.

They form two doublets, and no triplet is formed
even on the BKT transition line yx = yv?!

The two states corresponding to ¢='? are mixed by the
vortex perturbation cos2¢ and split into two levels
corresponding to V), = sin¢, V), = cos ¢

383



Energy Levels up to 2nd Order

- split between 7y ,7ve, should be odd in Yv
- SU(2) triplet should be formed on
the BKT transition line Yk = yv

= uniquely determines the energy levels up to O(y?)

. L oye 1o
L oye o yw 15 2
xvls/Q T 2 | 4 2 ! g(y/C _I_ QyKyV - yV)’
Ly yv 1 2
Q?VlC/Q — 9 | A | 9 | g(ylg — QyKyV _ yV))
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Obtaining Running Coupling Constants

(\}

Ny
<

_|_
|

_|_

(Y2 + 2yxcyy — y%),

(Y — 2ycyv — Yir),

_I_
el I Bt

_|_

|~ N =D
SR

2
yK & 4xW:2 T (.CI?VIC/Q QZVlS/Q) ’

1

yv ~ (zvlc/2 — $V18/2)/(1 - §?JIC)>

We can estimate yk & yv from the finite-size energy levels

Less accuracy than T, but we can apply to larger systems
(up to L=512)
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Visualization of Kosterlitz RG Flow!

Yv

0.35

0.30

0.25 -

0.20 -

0.15 -

0.10

0.05 -

0.00

XY model

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

[=16
32
64

128
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Conclusions (Part |)

TNR + Level Spectroscopy (finite size scaling of CFT)
allows
- super accurate determination of BKT critical point
- visualization of Kosterlitz RG flow by extraction of
running coupling constants from the spectrum
for continuous valued 2D classical spin system such as XY
mode]

Future: extension/application to more nontrivial
systems & unknown physics
(stay tuned!)
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Boundary CFT

Critical system in |+1D with a boundary:
invariance under conformal mapping which
preserves the boundary: “real analytic function”

Still infinite dimensional symmetry
(Virasoro algebra)

For a given CFT, there are several conformally invariant
boundary conditions, which correspond to
fixed points of “boundary RG flow”
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Boundary State

(imaginary)
“time”

B)

boundary condition < boundary state

n : ) =10

Ishibashi state for

— L,)|B
* ) the primary field h
— Z | h
h
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BCFT Partition Function

‘f_‘ open string

closed string channel ! hannel
B
L
AB = <B\6_HB\A> — Z(cfél)*ciBXi(g) = o—4mL/p

~» modular transformation
‘ — —7npB/L
Zap =) nhpx;(a) q=e

J 45




Cardy Condition
B) =) cplh)

h

Zap = (Ble "7 ]A) = } (c4)'cpxi(@)  G=etmL/P
modular transformation
' _ _—7mpB/L
Zap = ) "apx;(a) g=e "
J
| # of primary field |
nyn € L>g with the boundary conditions

A&B
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ELSEVIER Nuclear Physics B 570 [FS] (2000) 525-589

www elsevier.nl /locate /npe

Boundary conditions in rational conformal field theories

Roger E. Behrend *, Paul A. Pearce °, Valentina B. Petkova ',
Jean-Bernard Zuber ¢

We develop further the theory of Rational Conformal Field Theories (RCFTs) on a cylinder
with specified boundary conditions emphasizing the role of a triplet of algebras: the Verlinde,
graph fusion and Pasquier algebras. We show that solving Cardy’s equation, expressing consis-
tency of a RCFT on a cylinder, i1s equivalent to finding integer valued matrix representations of
the Verlinde algebra. These matrices allow us to naturally associate a graph G to each RCFT such
that the conformal boundary conditions are labelled by the nodes of G. This approach is carried to
completion for s/(2) theories leading to complete sets of conformal boundary conditions, their
associated cylinder partition functions and the A-D-E classification. We also review the current
status for WZW s/(3) theories. Finally, a systematic generalisation of the formalism of Cardy—
Lewellen 1s developed to allow for multiplicities arising from more general representations of the
Verlinde algebra. We obtain information on the bulk—boundary coefficients and reproduce the
relevant algebraic structures from the sewing constraints. © 2000 Elsevier Science B.V. All rights
reserved.



Rational or lrrational?

Rational CFT:
CFT with a finite number of primary fields
(representation of Virasoro algebra)

O

= finite reduced to a finite-dimensional problem

Irrational CFT:
CFT with an infinite number of primary fields

= = 8o more difficult as a CFT
O

Classification of conformal b.c. : generally unknown
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Free Boson: Irrational CFT!

1 ) _ K
“T duality”
o~ @+ 0~ 0+2m

K:*Luttinger parameter”

Infinite number of primary fields include

Vn = 62@nqb—|—zm9 n,m € 7

General classification of irrational CFT: unknown

49



Tomonaga-Luttinger Liqui~

S. Tomonaga

In 1D, all the low-energy excitations in s
the interacting electron system can be
described in terms of “phonons” (free bosons)

VY,

equivalent to (quantized) vibrating “string”

1 O? 0? . 2
St = ge® = LT a0

50



Tomonaga-Luttinger Liquid

The free boson theory appears trivial---
but it contains rich physics!

Luttinger parameter K represents the strength
of quantum fluctuation, and reflects the
electron interactions

K=0 —_ e K =0

Wigner super-

Cry%tal K< K> - Coﬁdutor
repulsive K =1 attractive

interaction  free fermion interaction
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Junction of 2 quantum wires

Kane-Fisher (1992), Furusaki-Nagaosa (1993)

/~ "\ tunneling

For non-interacting electrons:

transmission probability:
continuous function of the tunneling amplitude

conductance also depends continuously
on the tunneling amplitude

However, we will see that the interaction
fundamentally changes the physics!



Field theory on the junction

“fold” the system at the junction
two-component boson field theory
charge conservation at the junction
“kills” the total charge mode

boundary problem of a single-component
free boson field theory (c=1 CFT)
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Boundary condition of free boson

In the low-energy limit, the boundary
condition approaches to a
conformally invariant boundary condition

Known conformally invariant boundary conditions:

Disconnected
wires

Neumann b.c. g >

Perfect transmission
(merged to
a single wire)

Dirichlet b.c. <= >

54



Phase diagram for 2 wires

*
backscattering

perfect wire
(Dirichlet for 0) P S S

Non-Fermi Liquid
behavior for g = 1!

\4 \4 \4 v v

disconnected
(Neumann for 0)




Complete Set of BC?

From the RG analysis, there was no indication that
nontrivial conformally invariant b.c. exists

The conformally invariant boundary conditions for
the c=1 free boson CFT are exhausted by
Dirichlet, Neumann (and their SU(2) rotation?)
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Ny =/
ELSEVIER Nuclear Physics B 618 [FS] (2001) 675-688

www.elsevier.com/locate/npe

Exceptional boundary states at ¢ = 1
Romuald A. Janik

M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland

[1] D. Friedan, The space of conformal boundary conditions for the ¢ = 1 Gaussian model,
unpublished note, 1999.

T TleL1 -~

When we are in the rational setting the sum is finite and the coefficients have to
be integers (this is the main content of Cardy’s condition). In the nonrational case the
summation is transformed into an integral and the meaning of Cardy’s condition then is
not completelv understood. in particular. it is not obvious what conditions one should

impose on the néﬁ which now is a ‘density function’ (measure) on the space of conformal
weights A.

The least that we may do is to require that for any choice of boundary states |«), |8) the
density function ng}ﬁ should be non-negative. In Section 6 we will verify that this property
holds for our construction of Friedan’s boundary states.

s this really physical? (Dirichlet/Neumann has non-
negative integer coefficients)_



Phase diagram for 2 wires

*
backscattering

perfect wire
(Dirichlet for 0) P S S

Non-Fermi Liquid
behavior for g = 1!

\4 \4 \4 v v

disconnected
(Neumann for 0)




PHYSICAL REVIEW B 85, 045120 (2012)

General method for calculating the universal conductance of strongly correlated junctions of
multiple quantum wires

Armin Rahmani,! Chang-Yu Hou,”> Adrian Feiguin,” Masaki Oshikawa,* Claudio Chamon,' and Ian Affleck’
' Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2 Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, NL-2300 RA Leiden, The Netherlands
3Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, USA
*Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
> Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1
(Received 22 August 2011; revised manuscript received 28 November 2011; published 20 January 2012)

“conformal mapping”
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In [—(Jp () JZ (%))

g=20,10=

60

G = g% prediction
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Issues

. . ¢ o ) l
Effective system size = “max chord distance -

Need to construct the “mirror image” of the
boundary (junction) carefully

At short lengthscale, the boundary is not yet
conformally invariant (boundary RG flow)

Crossover of correlation functions (UV — IR)
cannot be studied faithfully
which are based on the conformal mapping

Calculation without the conformal mapping!?

61



PHYSICAL REVIEW B 99, 121103(R) (2019)

Crossover of correlation functions near a quantum impurity in a Tomonaga-Luttinger liquid

Chung-Yu Lo (2 H4£),! Yoshiki Fukusumi (ff{¥ 75 & ),> Masaki Oshikawa (#f1)1] 1E3%),?

Ying-Jer Kao ({5 9545),>*" and Pochung Chen (B H) 14
' Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

2Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

3Department of Physics, National Taiwan University, Taipei 10607, Taiwan
*National Center for Theoretical Sciences, Hsinchu 30013, Taiwan

™ (Received 24 May 2018; revised manuscript received 22 October 2018; published 7 March 2019)

infinite DMRG
+ finite window

Window size
2L = 400
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FIG. 2. (S*.S7), (S*,S%),and (J_;_1,»J;, 1) correlation functions
for g = 1.5. Data for the bulk and junctions with = 0.1, 0.3, and 0.8
are plotted. Solid lines are power-law fittings to the bulk data with
bulk exponents from bosonization (cf. Table I).



e R
2 T
10
((S S.> (S” .?<S|>)
10 f{%t _____ P I power- oV -
= R LELitg power-IR 3
10° T ey —
il i ,
10-5-_ t2 (-1)% * (( S, . S%) - <S.>(S.>)
1 1 | | | 1 1 | 1 1
__________ o
10 2 ¥ § '—P'-@-.*_§.+.&
4 "5“;-
10
-6
10 (<J|1/2 Jis1/2 7 - <J|1/2><J|+1/2>)
| | | 1 1 | | 1 | 1 1 1 I 1 1
1 10 100
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Co = 1.330 from bosonization 1s used [32] (cf. Table I).



Junction of 2 Inequivalent TLLs

V. KK t - va. K
as Do unnelin CRINE
/N J

a 5
Boundary CFT by rescaling

2, = U,T +ix * (F,0)J" (x,0)) = 272 (1

2y :7'—|—z'£ * <Ja(y,0),]5(aj,0)> — 2i2 (= Il

Y \2
U,u Vo ”UB)
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Junction of 2 Inequivalent TLLs
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FIG. 2. (a) and (c) are equal-time current-current correlation
functions (J*(x)J”(y)) versus x/v® + y/v”, where x and y
are limited to the dotted lines in (b) and (d) respectively.
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Field theory on a 3-wires junction

“fold” the system at the junction

3-component boson field theory

charge conservation at the junction
“kills” the total charge mode

boundary problem of a 2-component
free boson field theory (c=2 CFT) of 7

¥4



Non-trivial Boundary Conditions

For ¢ = 2 free boson CFT,

there are nontrivial conformally invariant boundary
conditions (satisfying the original Cardy condition)
other than Neumann/Dirichlet!

oblique compactification
lattice for c=2

0~ 6+ 27R

ReA
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RG argument

Necessity from the RG argument
Affleck-Ludwig 1991, Furusaki-Nagosa 1993,Yi-Kane 1997 etc.

when the “compactification lattice”
is oblique, Dirichlet & Neumann w5 a6
can be stable or unstable T I

simultaneously ? T

intermediate RG fixed point
= nontrivial conformally
invariant boundary cond.

-+ 231112(7t/5)

69



Fusion Construction

Given a consistent conformal b.c. A Za4 = ZnilAXi(Q)
1

new consistent b.c. B can be constructed by fusion

fusion with primary field k

Si . .
cly = 'y == 5 using modular $-matrix
l = S/x;(a)
J

Verlinde formula o

1 1 ' i \TJ S

NAB = ZNjknfélA ZSJNIZZ — géz

j J

v € Z>0 fusion rule coefficient for OPE
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Nontrival ¢c=2 Partition Function

c=2 free boson CFT with
a special compactification lattice

admits conformal embedding
Affleck-M.O.-Saleur 2000

2= — - | Ising + tricritical Ising + Potts

Zpp(q) = (XOX0 + X1/2X3/2)(X0 + X5)
+(X6Xg/5 T X{/QXf/1o)(X§/5 T X$/5>,

Znn(g) = (Xoxo + X1/2X3/2) (X0 + X3 + 2X2/3)
+(X(I)X§/5 T X{/QX{/m)(QXf/w T Xg/s T X$/5)7
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Alternative Embedding
Affleck-M.O.-Saleur 2000

4
2= - Z3) + (Potts = Z3(4) )

Zpp(q) =(xg +2x3)(xo + X3 )
T (2X2/5 T Xg/5)(X§/5 T X$/5)
(5B 5\ P, P P
ZNn(9) =(xo +2x3)(Xo + x5 +2X3/3)
T (2X2/5 T Xg/5)(2Xl1D/15 T X2P/5 T X17D/5)

In either embedding, we can apply fusion construction
in each sector to possibly obtain new boundary states
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Boundary state g-factor Lo oy

D 1/v/2v3 0 0
N V3/2 1 1
Y 2cos (1/5)/vV2vV3 (5—+/5)/4 (5—+/5)/4
AW 2cos (m/5)4/V3/2 (=1 ++/5)/4 (=1 ++/5)/4
R 3(7 + 3%5)/2]1/4 (-1+v5)/4 (5—+5)/4
S 31/4 1 0
T (7+3v5/6)/%  (5—+/5)/4 (—1++/5)/4
U 1/34/4 0 1

Boundary state g-factor 7. My

F 2 3 4+ 3
V3 -+ —
X (5 +2VE] /! A R
7—+V5 3v3—+vV15
\% 6(7 4 3v/5)]1/4 T2 L3V
Z 2v/3 L 43

Affleck-M.O.-Saleur 2000 .,



“Zoo’ of Conformal B.C.

Presumably incomplete

In fact, the conformal embedding works only for
a special compactification (Luttinger parameter)
but the similar conformal boundary condition should
exist for a range of parameters

I 2//3 4/3  1G,| "
@ IJ, . : T <1
. . t I n : { Ao
Classification of conformally o an Ry
invariant boundary Conditions (b)VI ‘L4{9 ........ 2?3 .............. 1 lGO.l;l u
for irrational CFTs!? 1 26 ()
VAR 1oL
1 2/3 49 IR’
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Chiral Y junction of quantum spin chains
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In {[(J2r(7) Nz (G)]]
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L=60 J, =34

| ! | ' | !
—8— m = 3000

line of slope -2
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Table 1

Comparison of the (absolute value of the) dimensionless spin conduc-
tance G 12/ Gy tor three values of J, corresponding to the O, C and K
points, respectively. The DMRG estimates for J, = 0.4 and 3.4 were
obtained for £ = 68. The value for J, = 10 has been extrapolated to
infinite size, as explained in the main text.

Fixed point Jy DMRG BCFT Rel. error
O 0.4 0.004 0

C 3.4 0.498 0.5 0.4%

K 10 0.217 0.2303... 3.7%

“K” =Y (3-channel Kondo,Yi-Kane)
“C”=F (Chiral)

Boundary state g-tactor Pro Pyy Boundary state g-factor oo Ly
D 1//2v3 0 0 /3
N V3/2 1 1 k % % iTg

3
Y 2cos (1/5)/V2v3 (5—+5)/4 (5—+/5)/4 X (4 4 2\/5)1/4 1+8¢5 i?)\/ﬁg\/ﬁ
W 2c0s (m/5)\/V3/2 (-1 +V5)/4 (14 VB)/4 V 6(7 + 3v/5)]1/4 T8 £3V3VI5
R 3(7+3v5)/2]7* (=1 +V5)/4 (5—/5)/4 7 Jo R 1 1/3



Where’s the Fermi statistics?

electrons are fermions !
can we really reduce the junction to the
problem of the free boson?

Answer: YES for the junction of 2 wires
(same result for the hard-core boson)

However, the Fermi statistics does play
a crucial role in the junction of 3 wires

/8



Fermi statistics is essential!

4 < 7\

! (-1)
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We study a junction of three quantum wires enclosing a magnetic flux. This is the simplest problem of
a quantum junction between Tomonaga-Luttinger liquids in which Fermi statistics enter in a nontrivial
way. We present a direct connection between this problem and the dissipative Hofstadter problem, or
quantum Brownian motion in two dimensions in a periodic potential and an external magnetic field,
which in turn is connected to open string theory in a background electromagnetic field. We find
nontrivial fixed points corresponding to a chiral conductance tensor leading to an asymmetric flow of

the current.
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fo\\{/ Conjectu ref:I

RG Flow Diagram

/t\ for | <K <3
N

I

chiral Xx
/ exact solution

—Tt/2 (chiral rotation of

/F Dirichlet/Neumann)




Rahmani, Hou et al. 2012
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Chiral fixed point

agree w/
BCFT prediction



M Fixed Point

2
(4
Gir(g = 1.5) = Goi(g = 1.5) ~ —0.55 —,

ehz Rahmani, Hou et al. 2012
Gix(g =2.0) = Gy (g =2.0) ~ —0.62 —,

h
o2 g=K
Gia(g =2.5) = Gi(g = 2.5) ~ —0.665 —.

conjecture

2Ky e’

G.. =
T 2K 43y — 3Ky 27

(38, — 1),
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Chiral EP.in iDMRG+Window

C.-Y. Lo, Y.-J. Kao, P. Chen et al., preliminary unpublished
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Dp Fixed Point
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Conclusions (Part 2)

Classification of conformally invariant
boundary conditions of irrational CFTs:
open problem (generally unknown)
In particular, cz2 free boson CFTs

(multicomponent TLLs) have various nontrivial
conformal boundary conditions with many applications

A few known exact solutions, and many more
presumed to exist from RG arguments

Refined numerical methods can help verifying
predictions and discovering more
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