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Lecture |:
Anomaly and Condensed Matter Physics

Lecture |l
Symmetry-Protected Critical Phases
and Global Anomaly

Anomaly (physics)

From Wikipedia, the free encyclopedia

In guantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's
classical action to be a symmetry of any regularization of the full quantum theory.['1l2] |n classical
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Dirac Fermion
L = @Z (z’h'y“a,,, —m)
T =2

w = /P2 + m?

massless
(m=0)

w = %[p]

“Dirac cone”




Axial Symmetry and Current

Massless Dirac fermion Lagrangian density

- L AV _ o UV
L = Yiy" 0, {777} =2n
“vector” U(l) symmetry = charge current conservation
Y — eV Op" =0
b e = oy

{*, 75} — 0 (y5)2 — 1 in even space-time dimensions

“axial” U(1) symmetry if m=0 = axial current conservation
) — €49 8“]’2 =0
Y — €4y Jp = VY7 Y



U(l) Chiral Anomaly

Noether’s theorem (“classical’™):
Massless Dirac fermion = two conserved currents

However, one of these conservation laws is inevitably broken
in quantum theory through “regularization” of UV divergence

L = iy (0, — iA)Y Adler/Bell-Jackiw (1969)

Yy

(in 3+1 dimensions)

5

Anomalous non-conservation
of axial current!

1
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Decay of neutral pion 7 — vy
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Regularization/Renormalization

‘renormalization theory is
simply a way to sweep the
difficulties of the divergences
of electrodynamics

under the rug.”
Richard Feynman, in
Nobel Lecture (1965)




Modern Understanding of Renormalization

Field theory =
universal long-distance behavior
of lattice model /
condensed matter systems

Exact symmetry in the
lattice model remains
exact in the long-distance limit

— ho anomaly?

How can we understand anomaly
in this context?

- | ] '\'.i.';' -
Lo ¢ Y {

...‘

Kenneth G. Wilson
(1936-2013)



Chiral Anomaly in |+] Dim.

L = iy* (8, — ieA,) v b = (if)
2pR, wL Right mover, Left mover
U() x U(1) symmetry Yr.1, — Vg e /®r

NR.IL = w;rz,LwR,L conserved individually?

However, one of the conservation law Is broken

1 0
:O 1%
oMj, = —QWGMVF” a(nR —nr) x E

: Chiral Anomaly



Chiral Symmetry on Lattice

If we can realize Dirac fermion on lattice with

exact chiral symmetry, the chiral symmetry should persist
= contradiction with chiral anomaly

In particular, if we can realize the right-moving and left-moving
“Weyl fermion” individually on the lattice, the exact chiral
symmetry would follow

This suggests that, we cannot realize chiral symmetry
exactly in a lattice model,

and that we cannot realize an individual right-moving/left-moving
“Weyl fermion” in a lattice

& Nielsen-Ninomiya theorem
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Nielsen-Ninomiya in |+1D

W

(UF3 YR

R P

Periodicity of the YR, V1, always

momentum space appear in pair!
(Brillouin zone) o




Chiral Anomaly in |+1D
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Acceleration of electrons by electric field!
universal in low-energy limit (topological quantization)



Nuclear Physics B193 (1981) 173-194
© North-Holland Publishing Company

ABSENCE OF NEUTRINOS ON A LATTICE
(II). Intuitive topological proof

H.B. NIELSEN
The Niels Bohr Institute, University of Copenhagen, and NORDITA, Blegdamsvej 17, DK-2100
Copenhagen §), Denmark
M. NINOMIYA

Rutherford Laboratory, Chilton, Didcot,
OXON OXl11 0QX, England

Same expectation (absence of single VWeyl fermion on lattice)
for 3+1D based on chiral anomaly

Proof is a bit more complicated
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Chirality in 3+1 D

Momentum Momentum
Spin ¢ $ Spin
L eft-handed Right-handed

(Helicity = Chirality if massless)
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Weyl Fermion in 3+1D & Lattice

H(ﬁ”qja (ﬁ)> — €a (ﬁ)‘\lja (ﬁ)> band structure

Touching of two bands
= Weyl point

H(D) ~ (@) + D Vo (p — p™)

TNZ

chirality = sgndet V'



Vortex Lines

<a|\11a(ﬁ)> =0

2 conditions (real part = imaginary part = 0)
3 parameters
— solution consists of curves in the momentum space

“vortex line”

The direction of the vortex line is defined by
“vorticity” i.e.

the winding of the complex phase
around the vortex line Q

. N



Weyl (band-touching) Points

Two bands degenerate at the Weyl points
= there is always a solution for  (q|¥(p)) = 0

by considering a linear superposition of two states

Weyl point:
b . .
;7/ source/sink of “vortex line”
' e in 3D momentum space

v .
e ~———,_ FEach vortex line should have
g ll Py ] « o 99 “ « 99
) . an “origin” and “endpoint

o™ | = Weyl points always appear
- in pair of opposite chiralities

Py
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Dirac Fermions in 2+1D
V' =09 =io¥,y* =0
€(p) ~ pg0” + pyo? + mo”®

Generic “band-touching” situation in CM

v
[

m<20
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Parity anomaly in 2+1D

D
Field-theory calculation gives racmass  pouli-Villars mass
e / /
Orxy = — (sgnm + sgnM)

2h -

“parity anomaly”

Massless Dirac fermion somehow has non-zero Hall conductivity
(breaking the time-reversal symmetry “spontaneously”)

This implies that one cannot realize a single massless Dirac
fermion in time-=-reversal invariant 2+1| dimensional lattice
model
(Dirac fermions always appear in pairs)
— distinct from, but similar to Nielsen-Ninomiya theorem
8 in even space-time dimensions



“Dimensional Reduction”

[

3-dimensional
momentum space

><-> =

2-dimensional momentum space H
+ | external parameter

2+1 D massless Dirac fermion H 3+ 1D Weyl fermion
at the critical point



Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,'*’ M. P, Nightingale, and M., den Nijs

Depaviment of Physics, University of Washington, Seattle, Washington 98195
(Received 30 April 1982)

VoLUME 51, NUMBER 24 PHYSICAL REVIEW LETTERS 12 DECEMBER 1983

Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase

Barry Simon
Depavitments of Mathewmatics and Physics, California Institute of Technology, Pasadena, Califovrnia 91125

(Received 18 October 1983)

Topological Invariant and the Quantization
of the Hall Conductance

MAHITO KOHMOTO™
et 1
Orpy — -
J h 27T'L MB?Z

d*k V:: x A(k)

2
& ¢« c e
_ A “Chern Number” < total vorticity
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Dimensional Reduction & Chern Number

PHYSICAL REVIEW B VOLUME 50, NUMBER 23 15 DECEMBER 1994-1

Quantized Hall conductivity of Bloch electrons: Topology and the Dirac fermion

Masaki Oshikawa*
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku Tokyo 106, Japan
(Received 28 June 1994)

|24 Selected for a Viewpoint in Physics
PHYSICAL REVIEW B 83, 205101 (2011)

S

Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates

Xiangang Wan,' Ari M. Turner,” Ashvin Vishwanath,>* and Sergey Y. Savrasov'*
!National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
2Department of Physics, University of California, Berkeley, California 94720, USA
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
*Department of Physics, University of California, Davis, One Shields Avenue, Davis, California 95616, USA

(Received 23 February 2011; published 2 May 2011)
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®/ Chern number (2+1D)
c e = total vorticity appearing
2

in a 2D cross section of
//, a ¥
pz \E
e

3D momentum space
Figure: Nielsen-Ninomiya (1981) Ozy = 9% (sgnm + sgn M)

1
AChern Number = 5 Z Asgnm; I

J

M.O. 1994 2

e
Oy = — “Chern Number”

h
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“Corollary”

If a single massless Dirac fermion is realized in
a time-reversal invariant lattice model in 2+1D,

Ogy = 0
by symmetry
Now, with a perturbation which opens a mass gap,

1 e?
Ty T 5,

which would contradict the TKNN quantization

SgNM

By contradiction, a single massless Dirac fermion in 2+1D
CANNOT be realized in a TR-invariant lattice model in 2+1D
23
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VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance o in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity
anomaly” of (2+1)-dimensional field theories.

FIG. 1. The honeycomb-net model (“2D graphite™) showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the 4
and B sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symeéretry

f ™ ' TEE LR 4 . 4 41 1 PR T

L. 1 o~y



Anomaly & “No-Go” Theorems

Anomaly in quantum field theory implies
“no-go”’ theorem for lattice model

Chiral anomaly = Absence of chiral Dirac fermion on lattice
(Nielsen-Ninomiya theorem for
even space-time dimensions)

Parity anomaly — Absence of single massless Dirac fermion on
time-reversal invariant lattice model in 2+1D

Any “loophole” to realize them on lattice!?

26



Chiral Fermion in Condensed Matter

PHYSICAL REVIEW B VOLUME 25, NUMBER 4 15 FEBRUARY 1982

Quantized Hall conductance, current-carrying edge states, and the existence
of extended states in a two-dimensional disordered potential

B. 1. Halperin
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 21 August 1981)

) right-moving skipping orbit
CAAAAAAAAAAAAAA A

O O O O OO0

cyclotron orbits

O O 0000

V.. £ Y
™ left-moving skipping orbit . .
Chiral (Weyl) fermion
in 1+1D as edge state
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How did we avoid N-N theorem?

Nielsen-Ninomiya theorem applies to |+1D system:
it does not apply in the limit of “infinite width”

—_—

width

——

For a finite width strip, Nielsen-Ninomiya theorem still applies,
and there indeed is a pair of left/right-moving Weyl fermion
which are spatially separated at the opposite edges

28



What about anomaly?

| current flow through bulk width

Anomalous field theory may be realized as
an edge/surface state of higher-dimensional lattice model

the “bulk” provides sink of anomalous current

29



Topological Insulatorwith a single Dirac cone
0.1-

0.12-

0.0 - [— -
= -

0.1
0.00 -

.2 -

015 000 015
k, (R")

(Princeton University Group)
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Anomaly & “No-Go” Theorems

Anomaly in quantum field theory implies

“no-go”’ theorem for lattice model
in the SAME DIMENSION

Chiral anomaly = Absence of chiral Dirac fermion on lattice
but 1+1D may be realized as
a chiral edge state of QHE in 2+1D

Parity anomaly — Absence of single massless Dirac fermion on
time-reversal invariant lattice model in 2+1D
but may be realized as a surface state of
a TR-invariant topological insulator in 3+1D

anomalous field theory may be realized at the edge/surface!

31



Anomaly in Interacting Systems

So far, | have discussed only non-interacting fermions

However, anomalies are believed to persist even in the presence
of interactions

“Anomalous field theory may be only realized
at the edge of a topological phase”*

Conversely, “anomalous field theory realized at the edge
implies a topological phase in the (higher dimensional) bulk”*

should be still valid in interacting systems!
*: many caveats!

32



Chiral Superfluid

Cooper pair with

d_ﬂ.> definite angular momentum [,=V
, v
pairing amplitude A~(p, + lpy)

Superconducting phase
of SroRuO4?

0 0
40 <4 NO R
Solid under pressure

A-phase of superfluid 3He

'T G ('ﬁ) 2 (ﬁ‘) 3
30 == RuO y :
SL 3He-A 59 . 9
P (bar) / superfluid 6) Q (P
20 T 3He-B superfluid / . L
, o &‘ 2.
Normal Fermi RuO- i '
10 <= Liquid ‘ Cp O (5) t
/ ('\() OO -
— % — AN
1 2 3 KT kD 5P
T (mK) RuO; o O\ 0o

#) »)
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Chiral Majorana Edge State

Chiral p+ip superconductor in 2+1| D
has edge state which is chiral Majorana fermion in |+1D

Chiral Majorana fermion is anomalous

— stable against perturbations
(No backscattering = “ingappable”)

Stability of the edge state implies the topological nature of
the chiral p+ip superconductor in 2+1D
“topological superconductor”

34



Non-chiral edge state!

Nr copies of right-moving AND left-moving chiral Majorana fermions

Ny

1 o o
L= yos Y [Vi @, +ivd Y] + Y3, —ivd)vg].

a=]1

equivalent to N = N#2 right/left-moving complex fermions

Can this be gapped by an edge perturbation?

Right-movers: from “T spin” Left-movers: from“| spin”
Symmetries: nt & n; separately conserved modulo 2 = Z; X Z;
mass term 1745 s forbidden by this symmetry

=> non-interacting system is stable for any Ny

“Z classification”
35



Effect of Interactions’

Let us see if the edge theory is anomalous or not
(anomaly should give a criterion applicable to interacting systems)

[Ryu-Zhang, 201 2]

Impose the Z; X Z; symmetry by “gauging”
or equivalently “orbifolding” (more on this later....)

1

(—1)" 1

(=1)™

Paso =

O

2

T+ 2y 47 s+ T

2

4 b ™ 1r 4 (Pgsc)e_ﬁHA) + Irp (P(;Sge_ﬁHP)

2

2
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Modular Invariance

7

Partition function of a consistent CFT must be
invariant under modular transformations
generated by

S: 17— 1/’7‘ T - 7—>714+1

T2 7 — 74+ 92 forfermions

37



Single Complex Fermion

Z)\M(T) _ 627T7L)\,uq—1/24q)\ /2 H(l —|—qu_1/2)(1 _I_w—lqn—1/2>

n=1

g = e*™'7 A p=10,1/2 W = 62““‘])\

Orbifold partition function
of the single complex fermion

(Nr =2, N=1)
cannot be modular invariant

38



N=4 Complex Fermions
(Z(r+ 1) =3 (20(n))
(Z0a(r +1)) =73 (23(r))’
(2 @+ 1) = (2 m)

1/2 4 iTT 1/2 4
(Zl//Q(TH)) _ 2in/3 (zl//Q(T))

Chiral orbifold partition function is modular covariant if
N is an integral multiple of 4 (Nris an integral multiple of 8)
Total (non-chiral) orbifold partition function

Zorb(Ta f) = Zorb(T)Zorb(T') is then modular invariant
39



Non-chiral edge state!

Nr copies of right-moving AND left-moving chiral Majorana fermions

Ny

1 o oo
L= y Z [V§(©0, +ivd)Y§ + ¥, — ivd)Yg].

a=1

Can this be gapped by an edge perturbation?

Right-movers: from “T spin” Left-movers: from “] spin”

Symmetries: nt & ny separately conserved modulo 2 = Z; x Z;

non-interacting system is stable for any Nf  “Z classification”

interacting system can be gapped only if Nr is an integral multiple of 8
“Zsg classification”

cf.) Fidkowski-Kitaev 2010

40



Anomaly in Interacting Systems

So far, | have discussed only non-interacting fermions

However, anomalies are believed to persist even in the presence
of interactions

“Anomalous field theory may be only realized
at the edge of a topological phase”*

Conversely, “anomalous field theory realized at the edge
implies a topological phase in the (higher dimensional) bulk”*

should be still valid in interacting systems!
*: many caveats!

41



SU(2) WZW theories

Lorentz-invariant critical point:
expect chiral SU(2) x SU(2) symmetry

Natural action with the SU(2) x SU(2) symmetry
1

%0 = 532

d*z Tr[(g~'0,9)°]
g: SU(2) matrix-valued field

However, RG implies that this theory is
always massive (gapped) “asymptotic freedom”

42



Wess-Zumino term
S =50+ kl'wz

1

Twz = 7o A’z €75 Tr[(g710;9) (97 10;9) (9™  Org)]
T JB

original space-time:
surface of the sphere

uniqueness of klwz

(modulo 2T1T)
= k: integer

B: (inside) sphere RG has a nontrivial fixed point
if k0 — gapless critical phase

43



Kac-Moody algebra

. L o
[ins Jﬁz] — "Z"fachS-i—m T 5knoabon+m,0

This “includes” Virasoro algebra (conformal invariance)

and is very powerful — determines scaling dimensions

(critical exponents) etc.

C = ok h-:j(j+1) OSJSﬁ
k+ 2 J k -+ 2 2

central charge scaling dimension of spin-j field

44



Discrete Symmetry

WZW action is also invariant under

g — -9

Discrete Z2 symmetry

Let us also consider gauging this Z, symmetry by
considering the Z; orbifold....

45



Projection vs. Path Integral

(imaginary) A 7+ periodic
time

space anti-
periodic

- 1
7P = Tr[Pye ] = 5[Z+ + Z7]

46



Orbifold Construction

The “projected” partition function Z+Proi is not
modular invariant by itself — must be supplemented
by twisted sectors

Z, =(1+S8+ TS)foOj — ZWZW

The resulting partition function represents
the “Z, orbifold” of the original SU(2)x WZW theory

47



Global Anomaly

The Z> orbifold should be modular invariant
by construction — but this is NOT always the case!

The Z; orbifold is modular invariant if k is even,
but it is modular NON-invariant if k is odd

Gepner-Witten 986

STRING THEORY ON GROUP MANIFOLDS

Doron GEPNER and Edward WITTEN

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 26 May 1986

48



What does it mean!?

SU(2) WZW with an odd level k has the global Z2 anomaly
=> it can be only realized at the edge of a 2+ 1D topological phase!?

However, it is known that
exactly solvable SU(2)-invariant spin chain with S=2k
(Takhtajan-Babujan model)

realizes the SU(2)x WZW ;| with the Z; symmetry,
in the low-energy limit!

Why the “anomalous” field theory can be realized in the
lattice model in the same dimension?

What is the implication of the anomaly in this case!

49



Types of Anomaly

- ABJ anomaly
- t'Hooft anomaly

obstruction of gauging a global symmetry

orbifold construction = gauging the Z2 symmetry

the WZWV theory is consistent for any integer k
if it is not gauged

SU(2)k with odd k has a t'‘Hooft anomaly concerning
the Z2 symmetry

50



Anomaly in Interacting Systems

So far, | have discussed only non-interacting fermions

However, anomalies are believed to persist even in the presence
of interactions

“Anomalous field theory may be only realized
at the edge of a topological phase”*

Conversely, “anomalous field theory realized at the edge
implies a topological phase in the (higher dimensional) bulk”*

should be still valid in interacting systems!
*: many caveats!

51



Realization of anomalous theory

If a global symmetry of the field theory is realized
as a ‘on-site” symmetry of a lattice model,
it can be gauged exactly
= a field theory with 't Hooft anomaly cannot be realized

on a lattice

However, the global symmetry of the field theory
may be realized in other manners...

52



Spin chain and WZW
S; ~ J; + const.(—1)*tr(gd)

Lattice translation symmetry
& discrete Z; symmetry (G — —(

Translation symmetry of the lattice may not be gauged

Field theory with a 't Hooft anomaly may have
a lattice realization in the same dimension, if
the anomalous global symmetry corresponds to

the translation symmetry
[Cho-Hsieh-Ryu 2017]
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What does this mean!?

If the orbifold is modular invariant, we can consider
projection onto the symmetric sector, and open a gap
within that sector to obtain the unique ground state

However, if it is modular non-invariant (ie. k: odd),
we cannot open the gap to obtain a unique ground state
within the symmetric sector;
ground states in the symmetric/antisymmetric sectors
must be degenerate!
“Lieb-Schultz-Mattis (LSM) theorem” from field theory

54



Lieb-Schultz-Mattis theorem

For translation & SU(2) invariant spin chains
if S is integer: no constraint

if S is half-odd-integer:
the system must be gapless,
OR the ground state is at least doubly degenerate

Lieb-Schultz-Mattis 1961 (S=1/2 chain at zero magnetization)

Affleck-Lieb 1986 (arbitrary S chain at zero magnetization)
MO-Yamanaka-Affleck 1997, MO 2000, Hastings 2004, etc etc.

more generally, “filling-enforced constraints”

55



Proof by large gauge invariance

LSM, Affleck-Lieb, M.O......

. 50
T |Wo) = e+ W)

|\If > adiabatic flux insertion \116>
0 Large gauge
momentum unchanged H transformation

o

( LIZ“\I}/>) 27TZVU T ‘\If/>
= /P2 (U, W)

momentum shift by 2y = 2m(S — m)
56
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Letters in Mathematical Physics 12 (1986) 57-69. 57
© 1986 by D. Reidel Publishing Company.

Affleck-Lieb 1986
S: half-odd-integer

— gapless or
TAN AFFLECK™ and ELLIOTT H. LIEB**

Deparments of Mathematics and Physics, Princeton University, P.O. Box 708, Princeton, NJ 08544, U.S.A. 2 -fO I CI g S. CI ege ne racy

A Proof of Part of Haldane’s Conjecture
on Spin Chains

(Received: 10 March 1986)

Abstract. It has been argued that the spectra of infinite length, translation and U(1) invariant, anisotropic,
antiferromagnetic spin s chaing differ according to whether  is integral or 3 integral: There is a range of
parameters for which there is a unique ground state with a gap above it in the integral case, but no such
range exists for the 4 integral case. We prove the above statement for 4 integral spin. We also prove that
for all s, finite length chams have a unique ground state for a wide range of parameters. The argument was
extended to SU(n) chains, and we prove analogous results in that case as well.

was a generalization of
ANNALS OF PHYSsICS: 16, 407-466 (1961) “Lieb'SChUItZ'MattiS TheOI’em”

Two Soluble Models of an Antiferromagnetic Chain

Fruiorr LieB, THEODORE ScHULTZ, AND DAaNIEL MaTTIs

Thomas J. Watson Research Center, Yorktown, New York

57



IT. THE XY MODEL

A. FORMULATION

The first model consists of N spin 15’s (N even) arranged in a row and having
only nearest neighbor interactions. It is

H, = Z[(l + 1SS0 (1 — )8 S, (2.1)

a’s and a'’s do not preserve this mixed set of canonical rules. However, it is
possible to transform to a new set of variables that are strictly Fermi operators
and in terms of which the Hamiltonian is just as simple.” Let

Main Result of “LSM” paper:
S=1/2 XY chain is solvable

by mapping to fermions

—1

i
c; = exp [wi > a,-“a,-]a,-
1

I

What about the LSM theorem?

(_ APPENDIX B. NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exact theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.

Appendix....

58



APPENDIX B. NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exact theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.
The generalization to longer range interactions and higher- dimenqional lattices
s indicated. A further generalization to particles of spin # Y% and a diseussion
of the ordering of excitod state energy levels has been submitted for publication
in the (I ournal of Mathematical Physics by Lieb and Mattis. ) 21

\ Perhaps refers to this paper

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962

Ordering Energy Levels of Interacting Spin Systems

Evuiorr LigB AND DANIEL MATTIS

Thomas J. Watson Research Center, International Business Machines Corporation, Yorktown Heights, New York
(Received October 6, 1961)

But no mention is actually made on
the generalization of LSM theorem?!
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Maybe....

LSM tried to generalize their theorem to general §,
but “failed” to prove it for integer S

So they scrapped the generalization and never published
(until Affleck-Lieb paper 25 years ago)

.... maybe missing the evidence of the “Haldane gap™??

60



Selection Rule

Perturb SU(2)x WZW with SU(2) and Z;-symmetric
relevant operators; suppose the RG flow reaches
SU(2)w WZW

if k is even, we should be able to consider
the projection onto Z; symmetric sector;
the RG flow can be understood in terms of

the Z> orbifold — k’ is also even

if k is odd, the IR fixed point should also have the
global anomaly (otherwise contradicts with “LSM”)

— k’ is also odd
“anomaly matching”

61



In terms of RG...

SU(2)x WZW

k > k, +— c- theorem

k=k" mod?2 <« presentwork
SU(2)r» WZW

SU(2)o WZW is identified with
gapped phase with a unique ground state

62



“Symmetry Protected” gapless phases

SU(2) + Lorentz + lattice translation symmetries

SU(2)x WZW

k: odd

63



Spin Chains and WZW

There is a special integrable (Bethe-ansatz solvable)

spin chain model for any §,
Takhtajan-Babujian (TB) model

—

egfors=l: Hrp =Y |S;-S;—(5;-5)*

J

Spin-S TB model is described by SU(2)2s WZW
(k=2S even if S is integer, k odd if S is half-odd integer)

Other models can be regarded as
TB model + perturbations, so

k: even if § is integer, k:odd if § is half-odd integer
if the one-site translation symmetry is kept



Our Claim

In the presence of the SU(2) and
lattice translation (by one site) symmetries,

S =1/2,3/2,5/2,...

- The system is gapped with a SSB of
the translation symmetry (doubly degenerate GS)

OR -The system is gapless, described by
SU(2)x WZW with an odd k

S=1.23,...

- The system is gapped (can be without SSB)
OR -The system is gapless, described by

SU(2)x WZW with an even k

65



Anomaly and LSM

Nr Dirac fermions in 1+1D [Cho-Hsieh-Ryu 2017]

N g
H= [dey" [} 0000 — Vhai0tn.d]
a=1

U(1)ss : YR.a(z) — €°%%9p () Zn : Ypa(z) = 2™Ra/Nopp o (z)
YL.a(z) = €999y 4 (). Ura(z) = 70Ny o (2)
U(l)xZNn symmetry = 't Hooft anomaly classified by
. . a N
Spinc cobordism group Qi (BLN) = Zey.N X LNjey

~J1 (IV:odd)
N2 (N : even)
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Anomaly and LSM

v, [Cho-Hsieh-Ryu 2017]
H = /d(IZ Z [wz,aiaxwL,a — w.}r{,aiawa,a:I
a=1

U(l)so : YRra(z) — eiéqf’q“z/)g,a(m) Zn : Ypa(z)— eQmsR’“/NgbR’a(a:)

UL a(z) = %) (). UL.a(z) = 2Ny ()

SR,a — SL,a
N

v, =
(BLN) = ZLiey.N X LNjey

\ .

SR a T 5Le mod Z, Z v,q, mod Z

Spm

Chiral Anomaly, LSM
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Summary

Anomaly:
symmetry of Lagrangian violated in quantization
& emergent symmetry in condensed matter/lattice model

Exact requirement of “anomalous” symmetry often leads to
“no-go theorem” on lattice realization (Nielsen-Ninomiya etc.)

However, an anomalous field theory can generally be realized as

edge/boundary of a higher-dimensional condensed matter/lattice
model

A field theory with 't Hooft anomaly may be realized in the same
space-time dimensions, if the symmetry is not “on-site”

e.g. translation symmetry corresponds to 't Hooft anomaly

— field-theory version of “Lieb-Schultz-Mattis theorem”
symmetry protection of gapless, critical phases
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