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Lecture 1:
   Anomaly and Condensed Matter Physics

Lecture II:
   Symmetry-Protected Critical Phases
                       and Global Anomaly
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Dirac Fermion

massless 
    (m=0)

     “Dirac cone”　
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Axial Symmetry and Current
Massless Dirac fermion Lagrangian density

 ! ei✓V  

 ̄ ! e�i✓V  ̄

“vector” U(1) symmetry ⇒ charge current conservation
@µj

µ = 0

jµ =  ̄�µ 

L =  ̄i�µ@µ 

{�µ, �5} = 0
�
�5

�2
= 1

 ! ei✓A 

 ̄ ! ei✓A  ̄

“axial” U(1) symmetry if m=0 ⇒ axial current conservation

@µj5µ = 0

j5µ =  ̄�µ�
5 

in even space-time dimensions
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U(1) Chiral Anomaly

Noether’s theorem (“classical”):
      Massless Dirac fermion ⇒ two conserved currents                                             

However, one of these conservation laws is inevitably broken
    in quantum theory through “regularization” of UV divergence

L =  ̄i�µ(@µ � iAµ) 

�µ�5

@µj5µ =
1

16⇡2
✏µ⌫⇢�F

µ⌫F ⇢�

Anomalous non-conservation
      of axial current!

⇡0 ! ��Decay of neutral pion
(in 3+1 dimensions)

Adler/Bell-Jackiw (1969)
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Regularization/Renormalization

“renormalization theory is 
simply a way to sweep the 
difficulties of the divergences 
of electrodynamics 
　　　under the rug.”  
Richard Feynman, in 
Nobel Lecture (1965)
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Modern Understanding of Renormalization

Field theory =
   universal long-distance behavior
   of lattice model /
　　　　condensed matter systems

Kenneth G. Wilson 
(1936-2013)How can we understand anomaly

    in this context?

Exact symmetry in the
lattice model remains
exact in the long-distance limit
   → no anomaly?
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Chiral Anomaly in 1+1 Dim.

U(1) x U(1) symmetry

conserved individually?

However, one of the conservation law is broken 

Chiral Anomaly
@µj5µ =

1

2⇡
✏µ⌫F

µ⌫ @

@t
(nR � nL) / E

 R, L Right mover, Left mover
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Chiral Symmetry on Lattice

If we can realize Dirac fermion on lattice with
   exact chiral symmetry,  the chiral symmetry should persist
      ⇒  contradiction with chiral anomaly

This suggests that,  we cannot realize chiral symmetry
   exactly in a lattice model,
 and that we cannot realize an individual right-moving/left-moving 
“Weyl fermion” in a lattice
   

In particular, if we can realize the right-moving and left-moving
  “Weyl fermion” individually on the lattice, the exact chiral 
symmetry would follow 

⇔ Nielsen-Ninomiya theorem
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Nielsen-Ninomiya in 1+1D

Periodicity of the 
momentum space 
（Brillouin zone）

        always 
appear in pair!

ω
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Chiral Anomaly in 1+1D
ω

Acceleration of electrons by electric field! 
universal in low-energy limit  (topological quantization)

@

@t
(nR � nL) / E
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Same expectation (absence of single Weyl fermion on lattice)
for 3+1D based on chiral anomaly

Proof is a bit more complicated
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Chirality in 3+1 D

（Helicity = Chirality if massless）

Momentum

SpinSpin

Right-handedLeft-handed

Momentum
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Weyl Fermion in 3+1D & Lattice

Touching of two bands
           = Weyl point

H(~p)| ↵(~p)i = ✏↵(~p)| ↵(~p)i band structure

H(~p) ⇠ ✏(~p⇤) +
X

µ,⌫

Vµ⌫�
⌫(pµ � p⇤µ)

chirality = sgn detV
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Vortex Lines

ha| ↵(~p)i = 0

2 conditions (real part = imaginary part = 0)
3 parameters
　　　　→  solution consists of curves in the momentum space

                           “vortex line”

The direction of the vortex line is defined by
 “vorticity” i.e.
the winding of the complex phase
    around the vortex line
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Weyl (band-touching) Points

Weyl point:
  source/sink of “vortex line”
  in 3D momentum space

Two bands degenerate at the Weyl points
     ⇒  there is always a solution for

                       by considering a linear superposition of two states 

ha| (~p)i = 0

Each vortex line should have
  an “origin” and “endpoint”
⇒ Weyl points always appear

  in pair of opposite chiralities
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Dirac Fermions in 2+1D

Generic “band-touching” situation in CM
m < 0 m=0 m>0
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Parity anomaly in 2+1D

Field-theory calculation gives

�xy =
e2

2h
(sgnm+ sgnM)

Dirac mass
Pauli-Villars mass

“parity anomaly”

Massless Dirac fermion somehow has non-zero Hall conductivity
     (breaking the time-reversal symmetry “spontaneously”)

This implies that one cannot realize a single massless Dirac
   fermion in time-reversal invariant 2+1 dimensional lattice 
model
           (Dirac fermions always appear in pairs)
      — distinct from, but similar to Nielsen-Ninomiya theorem
                                                      in even space-time dimensions18



“Dimensional Reduction”
m < 0 m=0 m>0

2-dimensional momentum space
    +  1 external parameter

3-dimensional
   momentum space

2+1 D massless Dirac fermion
   at the critical point

3+1D Weyl fermion
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=
e2

h
“Chern Number” “total vorticity”
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Dimensional Reduction & Chern Number
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Chern number (2+1D)
= total vorticity appearing
   in a 2D cross section of
   3D momentum space

�Chern Number =
1

2

X

j

�sgnmj

�xy =
e2

2h
(sgnm+ sgnM)

�xy =
e2

h
“Chern Number”

M.O. 1994
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Figure: Nielsen-Ninomiya (1981)



“Corollary”

If a single massless Dirac fermion is realized in
a time-reversal invariant lattice model in 2+1D,

�xy = 0
by symmetry

Now, with a perturbation which opens a mass gap,

�xy =
1

2

e2

h
sgnm

which would contradict the TKNN quantization

By contradiction, a single massless Dirac fermion in 2+1D
CANNOT be realized in a TR-invariant lattice model in 2+1D
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Graphene

time-reversal 
invariant, 
two Dirac points 
  at K and K’
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Anomaly & “No-Go” Theorems

Anomaly in quantum field theory implies
                      “no-go” theorem for lattice model

Chiral anomaly →  Absence of chiral Dirac fermion on lattice
                                  (Nielsen-Ninomiya theorem for
                                        even space-time dimensions)

Parity anomaly →  Absence of single massless Dirac fermion on
                      time-reversal invariant lattice model in 2+1D

Any “loophole” to realize them on lattice?

26



Chiral Fermion in Condensed Matter

Chiral (Weyl) fermion
  in 1+1D as edge state
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How did we avoid N-N theorem?

Nielsen-Ninomiya theorem applies to 1+1D system:
   it does not apply in the limit of “infinite width”

width

For a finite width strip, Nielsen-Ninomiya theorem still applies,
      and there indeed is a pair of left/right-moving Weyl fermion
      which are spatially separated at the opposite edges
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What about anomaly?

widthcurrent flow through bulk

Anomalous field theory may be realized as
    an edge/surface state of higher-dimensional lattice model

    the “bulk” provides sink of anomalous current
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(Princeton University Group)
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Anomaly & “No-Go” Theorems

Anomaly in quantum field theory implies
                      “no-go” theorem for lattice model
                                in the SAME DIMENSION

Chiral anomaly →  Absence of chiral Dirac fermion on lattice
                          but 1+1D may be realized as
                                            a chiral edge state of QHE in 2+1D

Parity anomaly →  Absence of single massless Dirac fermion on
                                time-reversal invariant lattice model in 2+1D
                            but may be realized as a surface state of
                               a TR-invariant topological insulator in 3+1D

anomalous field theory may be realized at the edge/surface!
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Anomaly in Interacting Systems

So far, I have discussed only non-interacting fermions

However, anomalies are believed to persist even in the presence
   of interactions

“Anomalous field theory may be only realized
                        at the edge of a topological phase”*

Conversely, “anomalous field theory realized at the edge
   implies a topological phase in the (higher dimensional) bulk”*

            should be still valid in interacting systems!
*:  many caveats!
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Chiral Superfluid
Cooper pair with
definite angular momentum lz=ν

pairing amplitude

A-phase of superfluid 3He Superconducting phase
of Sr2RuO4?
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Chiral Majorana Edge State

Chiral p+ip superconductor in 2+1 D
    has edge state which is chiral Majorana fermion in 1+1D

Chiral Majorana fermion is anomalous
     → stable against perturbations
        (No backscattering = “ingappable”)

Stability of the edge state implies the topological nature of
    the chiral p+ip superconductor in 2+1D
                “topological superconductor”
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Non-chiral edge state?
Nf  copies of right-moving AND left-moving chiral Majorana fermions

Can this be gapped by an edge perturbation?

Right-movers: from “↑ spin”   Left-movers:   from “↓ spin”

Symmetries:  n↑ & n↓ separately conserved modulo 2 ⇒ Z2 × Z2

mass term  a
L 

b
R is forbidden by this symmetry 

⇒ non-interacting system is stable for any Nf  

     “Z classification” 

equivalent to N = Nf/2 right/left-moving complex fermions
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Effect of Interactions?
Let us see if the edge theory is anomalous or not
  (anomaly should give a criterion applicable to interacting systems) 

[Ryu-Zhang, 2012]

Impose the Z2 × Z2 symmetry by “gauging”
         or equivalently “orbifolding” (more on this later….)

PGSO =
1 + (�1)n"

2

1 + (�1)n#

2

Zorb ⇠ TrA
�
PGSOe

��HA
�
+TrP

�
PGSOe

��HP
�

(roughly)⇠
����
Z++ + Z+� + Z�+ + Z��

2

����
2

36



Modular Invariance

10

τ 1+τ

Partition function of a consistent CFT must be
  invariant under modular transformations
  generated by

for fermions T 2 : ⌧ ! ⌧ + 2
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Single Complex Fermion

Z�µ(⌧) = e2⇡i�µq�1/24q�
2/2

1Y

n=1

(1 + wqn�1/2)(1 + w�1qn�1/2)

q = e2⇡i⌧ �, µ = 0, 1/2 w = e2⇡iµq�

Z0
0 (⌧ + 1) = e�i⇡/12Z0

1/2(⌧)

Z0
1/2(⌧ + 1) = e�i⇡/12Z0

0 (⌧)

Z1/2
0 (⌧ + 1) = ei⇡/6Z1/2

0 (⌧)

Z1/2
1/2 (⌧ + 1) = ei⇡/6Z1/2

1/2 (⌧)

Orbifold partition function
of the single complex fermion
(Nf =2, N=1)
cannot be modular invariant

38



N=4 Complex Fermions
�
Z0
0 (⌧ + 1)

�4
= e�i⇡/3

⇣
Z0
1/2(⌧)

⌘4

⇣
Z0
1/2(⌧ + 1)

⌘4
= e�i⇡/3

�
Z0
0 (⌧)

�4

⇣
Z1/2
0 (⌧ + 1)

⌘4
= e2i⇡/3

⇣
Z1/2
0 (⌧)

⌘4

⇣
Z1/2
1/2 (⌧ + 1)

⌘4
= e2i⇡/3

⇣
Z1/2
1/2 (⌧)

⌘4

Chiral orbifold partition function is modular covariant if
    N is an integral multiple of 4 (Nf is an integral multiple of 8)

Total (non-chiral) orbifold partition function

Zorb(⌧, ⌧̄) = Zorb(⌧)Zorb(⌧̄) is then modular invariant
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Non-chiral edge state?
Nf  copies of right-moving AND left-moving chiral Majorana fermions

Can this be gapped by an edge perturbation?

Right-movers: from “↑ spin”   Left-movers:   from “↓ spin”

Symmetries:  n↑ & n↓ separately conserved modulo 2 ⇒ Z2 × Z2

   non-interacting system is stable for any Nf     “Z classification” 

interacting system can be gapped only if Nf  is an integral multiple of 8 
                                                                  “Z8 classification” 

cf.) Fidkowski-Kitaev 2010
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Anomaly in Interacting Systems

So far, I have discussed only non-interacting fermions

However, anomalies are believed to persist even in the presence
   of interactions

“Anomalous field theory may be only realized
                        at the edge of a topological phase”*

Conversely, “anomalous field theory realized at the edge
   implies a topological phase in the (higher dimensional) bulk”*

            should be still valid in interacting systems!
*:  many caveats!
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SU(2) WZW theories

g:  SU(2) matrix-valued field

Lorentz-invariant critical point:
   expect chiral SU(2) x SU(2) symmetry

Natural action with the SU(2) x SU(2) symmetry

However, RG implies that this theory is
   always massive (gapped) “asymptotic freedom”
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Wess-Zumino term

B: (inside) sphere

original space-time:
surface of the sphere 

uniqueness of  kΓWZ

 (modulo 2π)
  ⇒   k: integer

RG has a nontrivial fixed point
  if k≠0 →  gapless critical phase 
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Kac-Moody algebra

This “includes” Virasoro algebra (conformal invariance)
   and is very powerful — determines scaling dimensions 
   (critical exponents) etc.

central charge scaling dimension of spin-j field
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Discrete Symmetry

WZW action is also invariant under

g ! �g

Discrete Z2 symmetry

Let us also consider gauging this Z2 symmetry by
    considering the Z2 orbifold….
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Projection vs. Path Integral

(imaginary)
time

space

periodic

anti-
periodic
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Orbifold Construction
The “projected” partition function Z+proj is not
  modular invariant by itself — must be supplemented
   by twisted sectors

The resulting partition function represents
  the “Z2 orbifold” of the original SU(2)k WZW theory
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Global Anomaly
The Z2 orbifold should be modular invariant
  by construction — but this is NOT always the case!

The Z2  orbifold is modular invariant if k is even,
but it is modular NON-invariant if k is odd

Gepner-Witten 1986
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What does it mean?

SU(2) WZW with an odd level k has the global Z2 anomaly
  ⇒ it can be only realized at the edge of a 2+1D topological phase?

However, it is known that
    exactly solvable SU(2)-invariant spin chain with S=2k
      (Takhtajan-Babujan model)
    realizes the SU(2)k WZW , with the Z2 symmetry,
  in the low-energy limit!

Why the “anomalous” field theory can be realized in the
   lattice model in the same dimension?

What is the implication of the anomaly in this case?
49



Types of Anomaly

50

- ABJ anomaly
- t’Hooft anomaly 

obstruction of gauging a global symmetry

orbifold construction = gauging the Z2 symmetry

the WZW theory is consistent for any integer k
    if it is not gauged

SU(2)k with odd k has a t’Hooft anomaly concerning
         the Z2 symmetry



Anomaly in Interacting Systems

So far, I have discussed only non-interacting fermions

However, anomalies are believed to persist even in the presence
   of interactions

“Anomalous field theory may be only realized
                        at the edge of a topological phase”*

Conversely, “anomalous field theory realized at the edge
   implies a topological phase in the (higher dimensional) bulk”*

            should be still valid in interacting systems!
*:  many caveats!
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Realization of anomalous theory

52

If a global symmetry of the field theory is realized
   as a “on-site” symmetry of a lattice model,
   it can be gauged exactly
          ⇒  a field theory with ’t Hooft anomaly cannot be realized

                    on a lattice

However, the global symmetry of the field theory
       may be realized in other manners…



Spin chain and WZW

53

Lattice translation symmetry
     ⇔  discrete Z2 symmetry 

Translation symmetry of the lattice may not be gauged

[Cho-Hsieh-Ryu 2017]

Field theory with a ’t Hooft anomaly may have
   a lattice realization in the same dimension, if
   the anomalous global symmetry corresponds to
   the translation symmetry



What does this mean?

54

If the orbifold is modular invariant, we can consider
  projection onto the symmetric sector, and open a gap
  within that sector to obtain the unique ground state

However, if it is modular non-invariant (ie. k: odd),
we cannot open the gap to obtain a unique ground state
  within the symmetric sector;
ground states in the symmetric/antisymmetric sectors
  must be degenerate!  
     “Lieb-Schultz-Mattis (LSM) theorem” from field theory



Lieb-Schultz-Mattis theorem

55

For translation & SU(2) invariant spin chains

if S is integer:  no constraint

if S is half-odd-integer:
       the system must be gapless, 
       OR the ground state is at least doubly degenerate

Lieb-Schultz-Mattis 1961 (S=1/2 chain at zero magnetization)
Affleck-Lieb 1986 (arbitrary S chain at zero magnetization)
MO-Yamanaka-Affleck 1997, MO 2000, Hastings 2004, etc etc.

more generally, “filling-enforced constraints”



Proof by large gauge invariance

| 0i

Tx| 0i = eiP
0
x | 0i

| 0
0i

momentum unchanged

56

Ux| 0
0i

Large gauge 
transformation

adiabatic flux insertion

momentum shift by 

LSM, Affleck-Lieb, M.O……

Tx (Ux| 0
0i) = e2⇡i⌫UxTx| 0

0i

= ei(P
0
x+2⇡⌫) (Ux| 0

0i)
2⇡⌫ = 2⇡(S �m)

Φ
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Affleck-Lieb 1986
S: half-odd-integer
   → gapless or
       2-fold g.s. degeneracy

was a generalization of
  “Lieb-Schultz-Mattis Theorem”
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Main Result of “LSM” paper:
  S=1/2 XY chain is solvable
  by mapping to fermions

What about the LSM theorem?

Appendix….
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?!

Perhaps refers to this paper

But no mention is actually made on
  the generalization of LSM theorem?!



Maybe….

60

LSM tried to generalize their theorem to general S,
   but “failed” to prove it for integer S  
 
So they scrapped the generalization and never published
       (until Affleck-Lieb paper 25 years ago)

…. maybe missing the evidence of the “Haldane gap”??



Selection Rule

61

Perturb SU(2)k WZW with SU(2) and Z2-symmetric 
relevant operators;  suppose the RG flow reaches
SU(2)k’  WZW
 

if k is even, we should be able to consider
  the projection onto Z2 symmetric sector;
  the RG flow can be understood in terms of
  the Z2 orbifold → k’ is also even 

if k is odd, the IR fixed point should also have the
 global anomaly (otherwise contradicts with “LSM”)
      → k’ is also odd

“anomaly matching”



In terms of RG…

62

SU(2)k WZW

SU(2)k’ WZW

SU(2)0 WZW is identified with
gapped phase with a unique ground state

← c- theorem

← present work



“Symmetry Protected” gapless phases
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SU(2) + Lorentz + lattice translation symmetries

SU(2)k WZW SU(2)k WZW

k: even k: odd



Spin Chains and WZW
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There is a special integrable (Bethe-ansatz solvable)
  spin chain model for any S, 
 Takhtajan-Babujian (TB) model

e.g. for S=1:

Spin-S TB model is described by SU(2)2S WZW  
 (k=2S even if S is integer, k odd if S is half-odd integer)

Other models can be regarded as
 TB model + perturbations, so 
   k: even if S is integer, k:odd if S is half-odd integer  
 if the one-site translation symmetry is kept



Our Claim

65

In the presence of the SU(2) and
lattice translation (by one site) symmetries,

- The system is gapped with a SSB of
   the translation symmetry (doubly degenerate GS)
OR - The system is gapless, described by
                    SU(2)k WZW  with an odd k

- The system is gapped (can be without SSB)
OR - The system is gapless, described by
               SU(2)k WZW with an even k



Anomaly and LSM

66

Nf Dirac fermions in 1+1D

U(1)×ZN symmetry ⇒ ’t Hooft anomaly classified by

   Spinc cobordism group

✏N =

(
1 (N : odd)

2 (N : even)

[Cho-Hsieh-Ryu 2017]



Anomaly and LSM

67

[Cho-Hsieh-Ryu 2017]

⌫a =
sR,a � sL,a

N

Chiral Anomaly, LSM



Summary
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Anomaly:
      symmetry of Lagrangian violated in quantization
         ⇔ emergent symmetry in condensed matter/lattice model

Exact requirement of “anomalous” symmetry often leads to
    “no-go theorem” on lattice realization (Nielsen-Ninomiya etc.)

However, an anomalous field theory can generally be realized as
edge/boundary of a higher-dimensional condensed matter/lattice 
model 

A field theory with ’t Hooft anomaly may be realized in the same
  space-time dimensions, if the symmetry is not “on-site”                                          

e.g. translation symmetry corresponds to ’t Hooft anomaly
   → field-theory version of “Lieb-Schultz-Mattis theorem”
       symmetry protection of gapless, critical phases


