Triplet spin resonance of the Haldane compound with interchain coupling A. I. Smirnov¹, V. N. Glazkov¹, T. Kashivagi², S. Kimura², M. Hagiwara², K. Kindo³, A.Ya. Shapiro⁴, L. N. Demianets⁴ ¹P. L. Kapitza Institute for Physical Problems, Moscow, ²Center for Quantum Science and Technology under Extreme Conditions (KYOKUGEN), Osaka University, ³Institute for Solid State Physics (ISSP), University of Tokyo, Collective triplet excitations in the Haldane-like magnet PbNi₂V₂O₈ present an example of new kind of spin dynamics. The spectrum of triplet excitations was found to be temperature dependent, indicating a nonlinear renormalization of the excitations energy. The 3D interchain coupling allows here the transition from a spin-liquid to an antiferromagnetic phase in a magnetic field, closing the spin gap. This ordering modifies the spectrum of triplet excitations both above and below the critical field. The measured spectrum of triplet excitations demonstrated a strong deviation from the perturbative approach for noninteracting chains [1], while is in agreement with a macroscopic approach implying the field-induced ordering at the critical field [2]. [1] O. Golinelli et al., J. Phys. Condens. Matter 5, 7847 (1993). [2] A.M. Farutin, V. I. Marchenko JETP 131, 860 (2007). ⁴ A. V. Shubnikov Institute for Crystallography RAS, Moscow